|
import functools |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from transformers.models.mistral.modeling_mistral import MistralDecoderLayer |
|
from transformers.utils import logging |
|
|
|
from .helpers import GatedCrossAttentionBlock |
|
from .utils import getattr_recursive, setattr_recursive |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class FlamingoLayer(nn.Module): |
|
""" |
|
FlamingoLayer is a wrapper around the GatedCrossAttentionBlock and DecoderLayer. |
|
""" |
|
|
|
def __init__( |
|
self, gated_cross_attn_layer, decoder_layer, gradient_checkpointing=False |
|
): |
|
super().__init__() |
|
self.gated_cross_attn_layer = gated_cross_attn_layer |
|
self.decoder_layer = decoder_layer |
|
self.vis_x = None |
|
self.media_locations = None |
|
if self.gated_cross_attn_layer is not None: |
|
self.gated_cross_attn_layer._use_gradient_checkpointing = ( |
|
gradient_checkpointing |
|
) |
|
self.decoder_layer._use_gradient_checkpointing = gradient_checkpointing |
|
self._use_gradient_checkpointing = gradient_checkpointing |
|
if self._use_gradient_checkpointing: |
|
self.gradient_checkpointing_enable() |
|
|
|
def is_conditioned(self) -> bool: |
|
"""Check whether the layer is conditioned.""" |
|
return self.vis_x is not None and self.media_locations is not None |
|
|
|
|
|
def condition_vis_x(self, vis_x): |
|
self.vis_x = vis_x |
|
|
|
def condition_media_locations(self, media_locations): |
|
self.media_locations = media_locations |
|
|
|
def condition_use_cached_media(self, use_cached_media): |
|
self.use_cached_media = use_cached_media |
|
|
|
def forward( |
|
self, |
|
lang_x, |
|
attention_mask=None, |
|
**decoder_layer_kwargs, |
|
): |
|
|
|
if self.gated_cross_attn_layer is not None: |
|
if self.vis_x is None: |
|
raise ValueError("vis_x must be conditioned before forward pass") |
|
|
|
if self.media_locations is None: |
|
raise ValueError( |
|
"media_locations must be conditioned before forward pass" |
|
) |
|
|
|
lang_x = self.gated_cross_attn_layer( |
|
lang_x, |
|
self.vis_x, |
|
media_locations=self.media_locations, |
|
use_cached_media=self.use_cached_media, |
|
) |
|
|
|
|
|
if ( |
|
self._use_gradient_checkpointing |
|
and self.training |
|
and isinstance(self.decoder_layer, MistralDecoderLayer) |
|
): |
|
if ( |
|
"use_cache" in decoder_layer_kwargs |
|
and decoder_layer_kwargs["use_cache"] is True |
|
): |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing." |
|
" Setting `use_cache=False`..." |
|
) |
|
decoder_layer_kwargs["use_cache"] = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
lang_x = self._gradient_checkpointing_func( |
|
self.decoder_layer.__call__, |
|
lang_x, |
|
attention_mask, |
|
decoder_layer_kwargs["position_ids"], |
|
decoder_layer_kwargs["past_key_value"], |
|
decoder_layer_kwargs["output_attentions"], |
|
decoder_layer_kwargs["use_cache"], |
|
) |
|
else: |
|
lang_x = self.decoder_layer( |
|
lang_x, attention_mask=attention_mask, **decoder_layer_kwargs |
|
) |
|
return lang_x |
|
|
|
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): |
|
""" |
|
Activates gradient checkpointing for the current model. |
|
|
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint |
|
activations". |
|
|
|
We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of |
|
the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 |
|
|
|
Args: |
|
gradient_checkpointing_kwargs (dict, *optional*): |
|
Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function. |
|
""" |
|
if gradient_checkpointing_kwargs is None: |
|
gradient_checkpointing_kwargs = {} |
|
|
|
gradient_checkpointing_func = functools.partial( |
|
checkpoint, **gradient_checkpointing_kwargs |
|
) |
|
|
|
self._gradient_checkpointing_func = gradient_checkpointing_func |
|
|
|
if getattr(self, "_hf_peft_config_loaded", False): |
|
|
|
|
|
|
|
|
|
self.enable_input_require_grads() |
|
|
|
|
|
class FlamingoLMMixin(nn.Module): |
|
""" |
|
Mixin to add cross-attention layers to a language model. |
|
""" |
|
|
|
def set_decoder_layers_attr_name(self, decoder_layers_attr_name): |
|
self.decoder_layers_attr_name = decoder_layers_attr_name |
|
|
|
def _get_decoder_layers(self): |
|
return getattr_recursive(self, self.decoder_layers_attr_name) |
|
|
|
def _set_decoder_layers(self, value): |
|
setattr_recursive(self, self.decoder_layers_attr_name, value) |
|
|
|
def init_flamingo( |
|
self, |
|
media_token_id, |
|
lang_hidden_size, |
|
vis_hidden_size, |
|
cross_attn_every_n_layers, |
|
*, |
|
enable_init_network_params=False, |
|
initializer_range=0.02, |
|
gradient_checkpointing=False, |
|
): |
|
""" |
|
Initialize Flamingo by adding a new gated cross attn to the decoder. Store the media token id for computing the media locations. |
|
""" |
|
self.old_decoder_blocks = self._get_decoder_layers() |
|
self.gated_cross_attn_layers = nn.ModuleList( |
|
[ |
|
( |
|
GatedCrossAttentionBlock( |
|
dim=lang_hidden_size, |
|
dim_visual=vis_hidden_size, |
|
ff_mult=4, |
|
enable_init_network_params=enable_init_network_params, |
|
initializer_range=initializer_range, |
|
gradient_checkpointing=gradient_checkpointing, |
|
) |
|
if (layer_idx + 1) % cross_attn_every_n_layers == 0 |
|
else None |
|
) |
|
for layer_idx, _ in enumerate(self._get_decoder_layers()) |
|
] |
|
) |
|
self.init_flamingo_layers(gradient_checkpointing) |
|
self.media_token_id = media_token_id |
|
self.initialized_flamingo = True |
|
self._use_cached_vision_x = False |
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
|
def init_flamingo_layers(self, gradient_checkpointing): |
|
""" |
|
Re initializes the FlamingoLayers. |
|
Propagates any changes made to self.gated_corss_attn_layers or self.old_decoder_blocks |
|
""" |
|
self._set_decoder_layers( |
|
nn.ModuleList( |
|
[ |
|
FlamingoLayer( |
|
gated_cross_attn_layer, decoder_layer, gradient_checkpointing |
|
) |
|
for gated_cross_attn_layer, decoder_layer in zip( |
|
self.gated_cross_attn_layers, self.old_decoder_blocks |
|
) |
|
] |
|
) |
|
) |
|
|
|
def forward(self, input_ids, attention_mask, **kwargs): |
|
"""Condition the Flamingo layers on the media locations before forward()""" |
|
if not self.initialized_flamingo: |
|
raise ValueError( |
|
"Flamingo layers are not initialized. Please call `init_flamingo`" |
|
" first." |
|
) |
|
|
|
media_locations = input_ids == self.media_token_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
use_cached_media_locations = ( |
|
self._use_cached_vision_x |
|
and self.is_conditioned() |
|
and not media_locations.any() |
|
) |
|
|
|
for layer in self._get_decoder_layers(): |
|
if not use_cached_media_locations: |
|
layer.condition_media_locations(media_locations) |
|
layer.condition_use_cached_media(use_cached_media_locations) |
|
|
|
|
|
|
|
kwargs["input_ids"] = input_ids |
|
kwargs["attention_mask"] = attention_mask |
|
|
|
|
|
if self.gradient_checkpointing and isinstance( |
|
self.old_decoder_blocks[0], MistralDecoderLayer |
|
): |
|
kwargs["use_cache"] = False |
|
return super().forward(**kwargs) |
|
|
|
def is_conditioned(self) -> bool: |
|
"""Check whether all decoder layers are already conditioned.""" |
|
return all(l.is_conditioned() for l in self._get_decoder_layers()) |
|
|
|
def clear_conditioned_layers(self): |
|
for layer in self._get_decoder_layers(): |
|
layer.condition_vis_x(None) |
|
layer.condition_media_locations(None) |
|
layer.condition_use_cached_media(None) |
|
|