File size: 13,649 Bytes
b0b3b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import inspect
import torch
import numpy as np
from einops import rearrange
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
try:
    from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
except:
    from torch.utils.checkpoint import checkpoint

def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    """ Sinusoid position encoding table """

    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)

    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_hid)]

    sinusoid_table = np.array(
        [get_posi_angle_vec(pos_i) for pos_i in range(n_position)]
    )

    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if padding_idx is not None:
        # zero vector for padding dimension
        sinusoid_table[padding_idx] = 0.0

    return torch.FloatTensor(sinusoid_table)


def construct_position_encoding(vis_dim, max_pos, rows, cols):
    seq = get_sinusoid_encoding_table(max_pos, int(vis_dim/2))
    y_coords, x_coords = torch.meshgrid(torch.arange(rows), torch.arange(cols), indexing='ij')

    row_positions = seq[y_coords.flatten(), :]
    col_positions = seq[x_coords.flatten(), :]

    position_encoding = torch.cat((col_positions, row_positions), dim=-1)

    return position_encoding
def unwrap_fsdp(m):
    if isinstance(m, FSDP):
        return unwrap_fsdp(m.module)
    return m


def accepts_parameter(func, parameter_name):
    signature = inspect.signature(func)
    return parameter_name in signature.parameters


class Flamingo(nn.Module):
    def __init__(
        self,
        vision_encoder: nn.Module,
        lang_encoder: nn.Module,
        eoc_token_id: int,
        media_token_id: int,
        vis_dim: int,
        cross_attn_every_n_layers: int = 1,
        gradient_checkpointing: bool = False,
        use_ft_layernorm: bool = False,
        use_ft_flash_attention: bool = False,
        enable_init_network_params: bool = False,
        initializer_range: float = 0.02,
    ):
        """
        Args:
            vision_encoder (nn.Module): HF CLIPModel
            lang_encoder (nn.Module): HF causal language model
            eoc_token_id (int): Token id for <|endofchunk|>
            media_token_id (int): Token id for <image>
            vis_dim (int): Dimension of the visual features.
                Visual features are projected to match this shape along the last dimension.
            cross_attn_every_n_layers (int, optional): How often to apply cross attention after transformer layer. Defaults to 1.
        """
        super().__init__()
        self.vit_use_grad = False
        self.eoc_token_id = eoc_token_id
        self.media_token_id = media_token_id
        self.vis_dim = vis_dim
        if hasattr(lang_encoder.config, "d_model"):
            self.lang_dim = lang_encoder.config.d_model  # mpt uses d_model
        else:
            self.lang_dim = lang_encoder.config.hidden_size

        self.vision_encoder = (
            vision_encoder.visual
            if hasattr(vision_encoder, "visual")
            else vision_encoder
        )

        self.lang_encoder = lang_encoder
        self.lang_encoder.init_flamingo(
            media_token_id=media_token_id,
            lang_hidden_size=self.lang_dim,
            vis_hidden_size=self.vis_dim,
            cross_attn_every_n_layers=cross_attn_every_n_layers,
            gradient_checkpointing=gradient_checkpointing,
            use_ft_layernorm=use_ft_layernorm,
            use_ft_flash_attention=use_ft_flash_attention,
            enable_init_network_params=enable_init_network_params,
            initializer_range=initializer_range,
        )
        self._use_gradient_checkpointing = gradient_checkpointing

    def forward(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        labels: torch.Tensor = None,
        image_mask: torch.Tensor = None,
        subimage_shape: torch.Tensor = None,
        clear_conditioned_layers: bool = True,
        past_key_values=None,
        use_cache: bool = False,
    ):
        """
        Forward pass of Flamingo.

        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W) with F=1
            lang_x (torch.Tensor): Language input ids
                shape (B, T_txt)
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            labels (torch.Tensor, optional): Labels. Defaults to None.
            clear_conditioned_layers: if True, clear the conditioned layers
                once the foward pass is completed. Set this to false if the
                same set of images will be reused in another subsequent
                forward pass.
            past_key_values: pre-computed values to pass to language model.
                See past_key_values documentation in Hugging Face
                CausalLM models.
            use_cache: whether to use cached key values. See use_cache
                documentation in Hugging Face CausalLM models.
        """
        assert (
            self.lang_encoder.initialized_flamingo
        ), "Flamingo layers are not initialized. Please call `init_flamingo` first."

        assert (
            self.lang_encoder._use_cached_vision_x or vision_x is not None
        ), "Must provide either vision_x or have precached media using cache_media()."

        if self.lang_encoder._use_cached_vision_x:
            # Case: use cached; vision_x should be cached and other
            # vision-related inputs should not be provided.
            assert vision_x is None, (
                "Expect vision_x to be None when media has been cached using"
                " cache_media(). Try uncache_media() first."
            )
            assert self.lang_encoder.is_conditioned()

        else:
            # Case: do not use caching (i.e. this is a standard forward pass);
            self._encode_vision_x(vision_x=vision_x, image_mask=image_mask, subimage_shape=subimage_shape)
            self._condition_media_locations(input_ids=lang_x)

        output = self.lang_encoder(
            input_ids=lang_x,
            attention_mask=attention_mask,
            labels=labels,
            past_key_values=past_key_values,
            use_cache=use_cache,
        )

        if clear_conditioned_layers:
            self.lang_encoder.clear_conditioned_layers()

        return output

    def generate(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        **kwargs,
    ):
        """
        Generate text conditioned on vision and language inputs.

        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                images in the same chunk are collated along T_img, and frames are collated along F
                currently only F=1 is supported (single-frame videos)
            lang_x (torch.Tensor): Language input
                shape (B, T_txt)
            **kwargs: see generate documentation in Hugging Face CausalLM models. Some notable kwargs:
                max_length (int, optional): Maximum length of the output. Defaults to None.
                attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
                num_beams (int, optional): Number of beams. Defaults to 1.
                max_new_tokens (int, optional): Maximum new tokens. Defaults to None.
                temperature (float, optional): Temperature. Defaults to 1.0.
                top_k (int, optional): Top k. Defaults to 50.
                top_p (float, optional): Top p. Defaults to 1.0.
                no_repeat_ngram_size (int, optional): No repeat ngram size. Defaults to 0.
                length_penalty (float, optional): Length penalty. Defaults to 1.0.
                num_return_sequences (int, optional): Number of return sequences. Defaults to 1.
                do_sample (bool, optional): Do sample. Defaults to False.
                early_stopping (bool, optional): Early stopping. Defaults to False.
        Returns:
            torch.Tensor: lang_x with generated tokens appended to it
        """
        subimage_shape = kwargs.pop("subimage_shape", None)
        image_mask = kwargs.pop("image_mask", None)
        num_beams = kwargs.pop("num_beams", 1)
        if num_beams > 1:
            vision_x = vision_x.repeat_interleave(num_beams, dim=0)
            if image_mask is not None:
                image_mask = image_mask.repeat_interleave(num_beams, dim=0)
            if subimage_shape is not None:
                subimage_shape = subimage_shape.repeat_interleave(num_beams, dim=0)
        self.lang_encoder._use_cached_vision_x = True
        self._encode_vision_x(vision_x=vision_x, image_mask=image_mask, subimage_shape=subimage_shape)

        eos_token_id = kwargs.pop("eos_token_id", self.eoc_token_id)
        output = self.lang_encoder.generate(
            input_ids=lang_x,
            attention_mask=attention_mask,
            eos_token_id=eos_token_id,
            num_beams=num_beams,
            **kwargs,
        )

        self.lang_encoder.clear_conditioned_layers()
        self.lang_encoder._use_cached_vision_x = False
        return output

    def _encode_vision_x(self, vision_x: torch.Tensor, image_mask: torch.Tensor=None, subimage_shape: torch.Tensor=None):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """

        assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
        b, T, F = vision_x.shape[:3]
        assert F == 1, "Only single frame supported"

        vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")

        if not self.vit_use_grad:
            with torch.no_grad():
                module_to_inspect = unwrap_fsdp(self.vision_encoder)
                if accepts_parameter(module_to_inspect.forward, "return_all_features"):
                    vision_x = self.vision_encoder(vision_x, return_all_features=True)
                else:
                    vision_x = self.vision_encoder(vision_x)[1]
        else:
            module_to_inspect = unwrap_fsdp(self.vision_encoder)
            if accepts_parameter(module_to_inspect.forward, "return_all_features"):
                if self.training:
                    vision_x = checkpoint(self.vision_encoder, vision_x, True)
                else:
                    vision_x = self.vision_encoder(vision_x, return_all_features=True)

            else:
                vision_x = self.vision_encoder(vision_x)[1]

        vision_x = rearrange(vision_x, "(b T F) v d -> b (T F) v d", b=b, T=T, F=F)
        pos_emb = torch.zeros((T,self.vis_dim)).to(vision_x.dtype).to(vision_x.device)
        for i in range(subimage_shape.shape[0]):
            cols, rows = int(subimage_shape[i,0]), int(subimage_shape[i,1])
            tmp_pos_emb = construct_position_encoding(vision_x.shape[-1], 20, rows, cols).to(vision_x.dtype).to(vision_x.device)
            pos_emb[1:int(cols*rows)+1,:] = tmp_pos_emb
        vision_x = vision_x + pos_emb.unsqueeze(1).unsqueeze(0).detach()
        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x((vision_x, image_mask))

    def _condition_media_locations(self, input_ids: torch.Tensor):
        """
        Compute the media token locations from lang_x and condition the language model on these.
        Args:
            input_ids (torch.Tensor): Language input
                shape (B, T_txt)
        """
        print(111)
        media_locations = input_ids == self.media_token_id
        # make all of the seq focus on the first fake image to avoid nan
        # media_locations = torch.where(tmp_mask==False, tmp_mask, media_locations)
        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_media_locations(media_locations)

    def cache_media(self, input_ids: torch.Tensor, vision_x: torch.Tensor):
        """
        Pre-cache a prompt/sequence of images / text for log-likelihood evaluations.
        All subsequent calls to forward() will generate attending to the LAST
        image in vision_x.
        This is not meant to be used to cache things for generate().
        Args:
            input_ids (torch.Tensor): Language input
                shape (B, T_txt)
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)
        """
        self._encode_vision_x(vision_x=vision_x)
        self._condition_media_locations(input_ids=input_ids)
        self.lang_encoder._use_cached_vision_x = True

    def uncache_media(self):
        """
        Clear all conditioning.
        """
        self.lang_encoder.clear_conditioned_layers()
        self.lang_encoder._use_cached_vision_x = False