File size: 13,649 Bytes
b0b3b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import inspect
import torch
import numpy as np
from einops import rearrange
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
try:
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
except:
from torch.utils.checkpoint import checkpoint
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
""" Sinusoid position encoding table """
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
sinusoid_table = np.array(
[get_posi_angle_vec(pos_i) for pos_i in range(n_position)]
)
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if padding_idx is not None:
# zero vector for padding dimension
sinusoid_table[padding_idx] = 0.0
return torch.FloatTensor(sinusoid_table)
def construct_position_encoding(vis_dim, max_pos, rows, cols):
seq = get_sinusoid_encoding_table(max_pos, int(vis_dim/2))
y_coords, x_coords = torch.meshgrid(torch.arange(rows), torch.arange(cols), indexing='ij')
row_positions = seq[y_coords.flatten(), :]
col_positions = seq[x_coords.flatten(), :]
position_encoding = torch.cat((col_positions, row_positions), dim=-1)
return position_encoding
def unwrap_fsdp(m):
if isinstance(m, FSDP):
return unwrap_fsdp(m.module)
return m
def accepts_parameter(func, parameter_name):
signature = inspect.signature(func)
return parameter_name in signature.parameters
class Flamingo(nn.Module):
def __init__(
self,
vision_encoder: nn.Module,
lang_encoder: nn.Module,
eoc_token_id: int,
media_token_id: int,
vis_dim: int,
cross_attn_every_n_layers: int = 1,
gradient_checkpointing: bool = False,
use_ft_layernorm: bool = False,
use_ft_flash_attention: bool = False,
enable_init_network_params: bool = False,
initializer_range: float = 0.02,
):
"""
Args:
vision_encoder (nn.Module): HF CLIPModel
lang_encoder (nn.Module): HF causal language model
eoc_token_id (int): Token id for <|endofchunk|>
media_token_id (int): Token id for <image>
vis_dim (int): Dimension of the visual features.
Visual features are projected to match this shape along the last dimension.
cross_attn_every_n_layers (int, optional): How often to apply cross attention after transformer layer. Defaults to 1.
"""
super().__init__()
self.vit_use_grad = False
self.eoc_token_id = eoc_token_id
self.media_token_id = media_token_id
self.vis_dim = vis_dim
if hasattr(lang_encoder.config, "d_model"):
self.lang_dim = lang_encoder.config.d_model # mpt uses d_model
else:
self.lang_dim = lang_encoder.config.hidden_size
self.vision_encoder = (
vision_encoder.visual
if hasattr(vision_encoder, "visual")
else vision_encoder
)
self.lang_encoder = lang_encoder
self.lang_encoder.init_flamingo(
media_token_id=media_token_id,
lang_hidden_size=self.lang_dim,
vis_hidden_size=self.vis_dim,
cross_attn_every_n_layers=cross_attn_every_n_layers,
gradient_checkpointing=gradient_checkpointing,
use_ft_layernorm=use_ft_layernorm,
use_ft_flash_attention=use_ft_flash_attention,
enable_init_network_params=enable_init_network_params,
initializer_range=initializer_range,
)
self._use_gradient_checkpointing = gradient_checkpointing
def forward(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
labels: torch.Tensor = None,
image_mask: torch.Tensor = None,
subimage_shape: torch.Tensor = None,
clear_conditioned_layers: bool = True,
past_key_values=None,
use_cache: bool = False,
):
"""
Forward pass of Flamingo.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W) with F=1
lang_x (torch.Tensor): Language input ids
shape (B, T_txt)
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
labels (torch.Tensor, optional): Labels. Defaults to None.
clear_conditioned_layers: if True, clear the conditioned layers
once the foward pass is completed. Set this to false if the
same set of images will be reused in another subsequent
forward pass.
past_key_values: pre-computed values to pass to language model.
See past_key_values documentation in Hugging Face
CausalLM models.
use_cache: whether to use cached key values. See use_cache
documentation in Hugging Face CausalLM models.
"""
assert (
self.lang_encoder.initialized_flamingo
), "Flamingo layers are not initialized. Please call `init_flamingo` first."
assert (
self.lang_encoder._use_cached_vision_x or vision_x is not None
), "Must provide either vision_x or have precached media using cache_media()."
if self.lang_encoder._use_cached_vision_x:
# Case: use cached; vision_x should be cached and other
# vision-related inputs should not be provided.
assert vision_x is None, (
"Expect vision_x to be None when media has been cached using"
" cache_media(). Try uncache_media() first."
)
assert self.lang_encoder.is_conditioned()
else:
# Case: do not use caching (i.e. this is a standard forward pass);
self._encode_vision_x(vision_x=vision_x, image_mask=image_mask, subimage_shape=subimage_shape)
self._condition_media_locations(input_ids=lang_x)
output = self.lang_encoder(
input_ids=lang_x,
attention_mask=attention_mask,
labels=labels,
past_key_values=past_key_values,
use_cache=use_cache,
)
if clear_conditioned_layers:
self.lang_encoder.clear_conditioned_layers()
return output
def generate(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
**kwargs,
):
"""
Generate text conditioned on vision and language inputs.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
images in the same chunk are collated along T_img, and frames are collated along F
currently only F=1 is supported (single-frame videos)
lang_x (torch.Tensor): Language input
shape (B, T_txt)
**kwargs: see generate documentation in Hugging Face CausalLM models. Some notable kwargs:
max_length (int, optional): Maximum length of the output. Defaults to None.
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
num_beams (int, optional): Number of beams. Defaults to 1.
max_new_tokens (int, optional): Maximum new tokens. Defaults to None.
temperature (float, optional): Temperature. Defaults to 1.0.
top_k (int, optional): Top k. Defaults to 50.
top_p (float, optional): Top p. Defaults to 1.0.
no_repeat_ngram_size (int, optional): No repeat ngram size. Defaults to 0.
length_penalty (float, optional): Length penalty. Defaults to 1.0.
num_return_sequences (int, optional): Number of return sequences. Defaults to 1.
do_sample (bool, optional): Do sample. Defaults to False.
early_stopping (bool, optional): Early stopping. Defaults to False.
Returns:
torch.Tensor: lang_x with generated tokens appended to it
"""
subimage_shape = kwargs.pop("subimage_shape", None)
image_mask = kwargs.pop("image_mask", None)
num_beams = kwargs.pop("num_beams", 1)
if num_beams > 1:
vision_x = vision_x.repeat_interleave(num_beams, dim=0)
if image_mask is not None:
image_mask = image_mask.repeat_interleave(num_beams, dim=0)
if subimage_shape is not None:
subimage_shape = subimage_shape.repeat_interleave(num_beams, dim=0)
self.lang_encoder._use_cached_vision_x = True
self._encode_vision_x(vision_x=vision_x, image_mask=image_mask, subimage_shape=subimage_shape)
eos_token_id = kwargs.pop("eos_token_id", self.eoc_token_id)
output = self.lang_encoder.generate(
input_ids=lang_x,
attention_mask=attention_mask,
eos_token_id=eos_token_id,
num_beams=num_beams,
**kwargs,
)
self.lang_encoder.clear_conditioned_layers()
self.lang_encoder._use_cached_vision_x = False
return output
def _encode_vision_x(self, vision_x: torch.Tensor, image_mask: torch.Tensor=None, subimage_shape: torch.Tensor=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
b, T, F = vision_x.shape[:3]
assert F == 1, "Only single frame supported"
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
if not self.vit_use_grad:
with torch.no_grad():
module_to_inspect = unwrap_fsdp(self.vision_encoder)
if accepts_parameter(module_to_inspect.forward, "return_all_features"):
vision_x = self.vision_encoder(vision_x, return_all_features=True)
else:
vision_x = self.vision_encoder(vision_x)[1]
else:
module_to_inspect = unwrap_fsdp(self.vision_encoder)
if accepts_parameter(module_to_inspect.forward, "return_all_features"):
if self.training:
vision_x = checkpoint(self.vision_encoder, vision_x, True)
else:
vision_x = self.vision_encoder(vision_x, return_all_features=True)
else:
vision_x = self.vision_encoder(vision_x)[1]
vision_x = rearrange(vision_x, "(b T F) v d -> b (T F) v d", b=b, T=T, F=F)
pos_emb = torch.zeros((T,self.vis_dim)).to(vision_x.dtype).to(vision_x.device)
for i in range(subimage_shape.shape[0]):
cols, rows = int(subimage_shape[i,0]), int(subimage_shape[i,1])
tmp_pos_emb = construct_position_encoding(vision_x.shape[-1], 20, rows, cols).to(vision_x.dtype).to(vision_x.device)
pos_emb[1:int(cols*rows)+1,:] = tmp_pos_emb
vision_x = vision_x + pos_emb.unsqueeze(1).unsqueeze(0).detach()
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x((vision_x, image_mask))
def _condition_media_locations(self, input_ids: torch.Tensor):
"""
Compute the media token locations from lang_x and condition the language model on these.
Args:
input_ids (torch.Tensor): Language input
shape (B, T_txt)
"""
print(111)
media_locations = input_ids == self.media_token_id
# make all of the seq focus on the first fake image to avoid nan
# media_locations = torch.where(tmp_mask==False, tmp_mask, media_locations)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_media_locations(media_locations)
def cache_media(self, input_ids: torch.Tensor, vision_x: torch.Tensor):
"""
Pre-cache a prompt/sequence of images / text for log-likelihood evaluations.
All subsequent calls to forward() will generate attending to the LAST
image in vision_x.
This is not meant to be used to cache things for generate().
Args:
input_ids (torch.Tensor): Language input
shape (B, T_txt)
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
"""
self._encode_vision_x(vision_x=vision_x)
self._condition_media_locations(input_ids=input_ids)
self.lang_encoder._use_cached_vision_x = True
def uncache_media(self):
"""
Clear all conditioning.
"""
self.lang_encoder.clear_conditioned_layers()
self.lang_encoder._use_cached_vision_x = False
|