Ihor
/

Token Classification
GLiNER
PyTorch
English
NER
GLiNER
information extraction
encoder
entity recognition
biomed
nielsr HF Staff commited on
Commit
cfc6d96
·
verified ·
1 Parent(s): 65f0497

Add link to paper, link to Github repository

Browse files

This PR ensures the proper link to the paper is present, along with the link to the Github repository (which enables people to contribute to the project, open issues etc.).

Files changed (1) hide show
  1. README.md +36 -31
README.md CHANGED
@@ -1,11 +1,16 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- library_name: gliner
6
  datasets:
7
  - knowledgator/GLINER-multi-task-synthetic-data
8
  - knowledgator/biomed_NER
 
 
 
 
 
 
9
  pipeline_tag: token-classification
10
  tags:
11
  - NER
@@ -14,19 +19,19 @@ tags:
14
  - encoder
15
  - entity recognition
16
  - biomed
17
- base_model:
18
- - microsoft/deberta-v3-base
19
- - BAAI/bge-small-en-v1.5
20
- metrics:
21
- - f1
22
  ---
 
23
  # GLiNER-BioMed
24
 
 
 
25
  **GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
26
 
27
 
28
  **GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
29
 
 
 
30
  ### How to Use
31
  Install the official GLiNER library with pip:
32
  ```bash
@@ -92,28 +97,28 @@ We examined our models on 8 complex real-world datasets and compared them with o
92
  | [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1) | 42.34 | 27.10 | 24.44 | 38.32 |
93
  | [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2) | 38.66 | 25.36 | 17.02 | 32.42 |
94
  | [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1) | 47.77 | 29.60 | 21.13 | 40.78 |
95
- | [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2) | 37.38 | 21.42 | 15.44 | 33.11 |
96
- | [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1) | 48.04 | 29.75 | 28.20 | 43.43 |
97
- | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1) | 48.99 | 31.79 | 33.77 | 45.13 |
98
- | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5) | 53.81 | 35.22 | 35.65 | 51.57 |
99
- | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)** | **59.77**| **40.67** | **42.65** | **58.40** |
100
- | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)** | 54.90 | 35.78 | 31.66 | 50.46 |
101
- | **Base models** | | | | |
102
- | [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1) | 41.61 | 24.98 | 10.27 | 31.59 |
103
- | [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2) | 34.33 | 24.48 | 22.01 | 30.58 |
104
- | [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1) | 40.25 | 25.26 | 14.41 | 32.64 |
105
- | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1) | 41.59 | 27.16 | 17.74 | 34.44 |
106
- | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5) | 46.49 | 30.93 | 25.26 | 44.68 |
107
- | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)** | 54.37| **36.20** | **41.61** | 53.05 |
108
- | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)** | **58.31** | 35.22 | 32.39 | **54.91** |
109
- | **Small models** | | | | |
110
- | [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1) | 40.99 | 22.81 | 7.86 | 31.15 |
111
- | [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2) | 33.55 | 21.12 | 15.76 | 28.78 |
112
- | [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1) | 38.45 | 23.25 | 10.92 | 30.67 |
113
- | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1) | 39.15 | 24.96 | 14.48 | 33.10 |
114
- | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5) | 38.21 | 28.53 | 18.01 | 36.88 |
115
- | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)** | 52.53| **34.49** | **38.17** | 50.87 |
116
- | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)** | **56.93** | 33.88 | 33.61 | **53.12** |
117
 
118
 
119
  ### Join Our Discord
 
1
  ---
2
+ base_model:
3
+ - microsoft/deberta-v3-base
4
+ - BAAI/bge-small-en-v1.5
 
5
  datasets:
6
  - knowledgator/GLINER-multi-task-synthetic-data
7
  - knowledgator/biomed_NER
8
+ language:
9
+ - en
10
+ library_name: gliner
11
+ license: apache-2.0
12
+ metrics:
13
+ - f1
14
  pipeline_tag: token-classification
15
  tags:
16
  - NER
 
19
  - encoder
20
  - entity recognition
21
  - biomed
 
 
 
 
 
22
  ---
23
+
24
  # GLiNER-BioMed
25
 
26
+ This repository contains the models as described in [GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition](https://huggingface.co/papers/2504.00676).
27
+
28
  **GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
29
 
30
 
31
  **GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
32
 
33
+ For the official code repository, visit https://github.com/ds4dh/GLiNER-biomed.
34
+
35
  ### How to Use
36
  Install the official GLiNER library with pip:
37
  ```bash
 
97
  | [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1) | 42.34 | 27.10 | 24.44 | 38.32 |
98
  | [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2) | 38.66 | 25.36 | 17.02 | 32.42 |
99
  | [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1) | 47.77 | 29.60 | 21.13 | 40.78 |
100
+ | [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2) | 37.38 | 21.42 \t| 15.44 \t| 33.11 \t|
101
+ | [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1) \t| 48.04\t| 29.75 \t| 28.20 \t| 43.43 \t|
102
+ | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1) \t| 48.99\t| 31.79 \t| 33.77 \t| 45.13 \t|
103
+ | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5) \t| 53.81\t| 35.22 \t| 35.65 \t| 51.57 \t|
104
+ | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)** \t| **59.77**| **40.67** \t| **42.65** \t| **58.40** |
105
+ | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)** \t| 54.90\t| 35.78 \t| 31.66 \t| 50.46 \t|
106
+ | **Base models** \t| \t| \t| \t| \t|
107
+ | [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1) \t| 41.61\t| 24.98 \t| 10.27 \t| 31.59 \t|
108
+ | [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2) \t| 34.33\t| 24.48 \t| 22.01 \t| 30.58 \t|
109
+ | [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1) \t| 40.25\t| 25.26 \t| 14.41 \t| 32.64 \t|
110
+ | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1) \t| 41.59\t| 27.16 \t| 17.74 \t| 34.44 \t|
111
+ | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5) \t| 46.49\t| 30.93 \t| 25.26 \t| 44.68 \t|
112
+ | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)** \t| 54.37| **36.20** \t| **41.61** \t| 53.05 |
113
+ | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)** \t| **58.31**\t| 35.22 \t| 32.39 \t| **54.91** \t|
114
+ | **Small models** \t| \t| \t| \t| \t|
115
+ | [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1) \t| 40.99\t| 22.81 \t| 7.86 \t| 31.15 \t|
116
+ | [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2) \t| 33.55\t| 21.12 \t| 15.76 \t| 28.78 \t|
117
+ | [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1) \t| 38.45\t| 23.25 \t| 10.92 \t| 30.67 \t|
118
+ | [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1) \t| 39.15\t| 24.96 \t| 14.48 \t| 33.10 \t|
119
+ | [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5) \t| 38.21\t| 28.53 \t| 18.01 \t| 36.88 \t|
120
+ | **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)** \t| 52.53| **34.49** \t| **38.17** \t| 50.87 |
121
+ | **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)** \t| **56.93**\t| 33.88 \t| 33.61 \t| **53.12** \t|
122
 
123
 
124
  ### Join Our Discord