Ihor
/

Token Classification
GLiNER
PyTorch
English
NER
GLiNER
information extraction
encoder
entity recognition
biomed
anthonyyazdaniml commited on
Commit
9fa970b
·
verified ·
1 Parent(s): df23c58

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -3,8 +3,9 @@ base_model:
3
  - microsoft/deberta-v3-base
4
  - BAAI/bge-small-en-v1.5
5
  datasets:
6
- - knowledgator/GLINER-multi-task-synthetic-data
7
- - knowledgator/biomed_NER
 
8
  language:
9
  - en
10
  library_name: gliner
@@ -23,7 +24,7 @@ tags:
23
 
24
  # GLiNER-BioMed
25
 
26
- This repository contains the models as described in [GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition](https://huggingface.co/papers/2504.00676).
27
 
28
  **GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
29
 
@@ -132,13 +133,13 @@ If you use GLiNER-biomed models in your work, please cite:
132
 
133
  ```bibtex
134
  @misc{yazdani2025glinerbiomedsuiteefficientmodels,
135
- title={GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition},
136
  author={Anthony Yazdani and Ihor Stepanov and Douglas Teodoro},
137
  year={2025},
138
  eprint={2504.00676},
139
  archivePrefix={arXiv},
140
  primaryClass={cs.CL},
141
- url={https://arxiv.org/abs/2504.00676},
142
  }
143
  ```
144
 
 
3
  - microsoft/deberta-v3-base
4
  - BAAI/bge-small-en-v1.5
5
  datasets:
6
+ - numind/NuNER
7
+ - anthonyyazdaniml/gliner-biomed-pre-training
8
+ - anthonyyazdaniml/gliner-biomed-post-training
9
  language:
10
  - en
11
  library_name: gliner
 
24
 
25
  # GLiNER-BioMed
26
 
27
+ This repository contains the models as described in [GLiNER-BioMed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition](https://arxiv.org/abs/2504.00676).
28
 
29
  **GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
30
 
 
133
 
134
  ```bibtex
135
  @misc{yazdani2025glinerbiomedsuiteefficientmodels,
136
+ title={GLiNER-BioMed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition},
137
  author={Anthony Yazdani and Ihor Stepanov and Douglas Teodoro},
138
  year={2025},
139
  eprint={2504.00676},
140
  archivePrefix={arXiv},
141
  primaryClass={cs.CL},
142
+ url={https://arxiv.org/abs/2504.00676},
143
  }
144
  ```
145