Add link to Github repository
Browse filesThis PR adds a direct link to the Github repository in the model card for easier access to the code and training pipelines.
README.md
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
- en
|
5 |
-
library_name: gliner
|
6 |
datasets:
|
7 |
- knowledgator/GLINER-multi-task-synthetic-data
|
8 |
- knowledgator/biomed_NER
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pipeline_tag: token-classification
|
10 |
tags:
|
11 |
- NER
|
@@ -14,11 +18,8 @@ tags:
|
|
14 |
- encoder
|
15 |
- entity recognition
|
16 |
- biomed
|
17 |
-
base_model:
|
18 |
-
- microsoft/deberta-v3-base
|
19 |
-
metrics:
|
20 |
-
- f1
|
21 |
---
|
|
|
22 |
# GLiNER-BioMed
|
23 |
|
24 |
**GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
|
@@ -26,6 +27,8 @@ metrics:
|
|
26 |
|
27 |
**GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
|
28 |
|
|
|
|
|
29 |
### How to Use
|
30 |
Install the official GLiNER library with pip:
|
31 |
```bash
|
@@ -77,32 +80,32 @@ We examined our models on 8 complex real-world datasets and compared them with o
|
|
77 |
|------------------------|----------|----------------|------------------|-------------|
|
78 |
| **Large models** | | | | |
|
79 |
| [NuNER Zero](https://huggingface.co/numind/NuNER_Zero) | 40.87 | 21.79 | 13.94 | 33.67 |
|
80 |
-
| [NuNER Zero span](https://huggingface.co/numind/NuNER_Zero-span) | 40.26 | 22.51 | 14.27 | 32.52
|
81 |
-
| [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1)
|
82 |
-
| [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2)
|
83 |
-
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1)
|
84 |
-
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2)
|
85 |
-
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1)
|
86 |
-
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1)
|
87 |
-
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5)
|
88 |
-
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)**
|
89 |
-
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)**
|
90 |
-
| **Base models**
|
91 |
-
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1)
|
92 |
-
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2)
|
93 |
-
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)
|
94 |
-
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1)
|
95 |
-
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5)
|
96 |
-
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)**
|
97 |
-
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)**
|
98 |
-
| **Small models**
|
99 |
-
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1)
|
100 |
-
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2)
|
101 |
-
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1)
|
102 |
-
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1)
|
103 |
-
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5)
|
104 |
-
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)**
|
105 |
-
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)**
|
106 |
|
107 |
|
108 |
### Join Our Discord
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- microsoft/deberta-v3-base
|
|
|
|
|
4 |
datasets:
|
5 |
- knowledgator/GLINER-multi-task-synthetic-data
|
6 |
- knowledgator/biomed_NER
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
library_name: gliner
|
10 |
+
license: apache-2.0
|
11 |
+
metrics:
|
12 |
+
- f1
|
13 |
pipeline_tag: token-classification
|
14 |
tags:
|
15 |
- NER
|
|
|
18 |
- encoder
|
19 |
- entity recognition
|
20 |
- biomed
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
+
|
23 |
# GLiNER-BioMed
|
24 |
|
25 |
**GLiNER** is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoders (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
|
|
|
27 |
|
28 |
**GLiNER-biomed**, developed in collaboration with [DS4DH](https://www.unige.ch/medecine/radio/en/research-groups/1035teodoro) from the University of Geneva, introduces a specialized suite of efficient open biomedical NER models based on the GLiNER framework. GLiNER-biomed leverages synthetic annotations distilled from large generative biomedical language models to achieve state-of-the-art zero-shot and few-shot performance in biomedical entity recognition tasks.
|
29 |
|
30 |
+
Code and training pipelines: https://github.com/ds4dh/GLiNER-biomed
|
31 |
+
|
32 |
### How to Use
|
33 |
Install the official GLiNER library with pip:
|
34 |
```bash
|
|
|
80 |
|------------------------|----------|----------------|------------------|-------------|
|
81 |
| **Large models** | | | | |
|
82 |
| [NuNER Zero](https://huggingface.co/numind/NuNER_Zero) | 40.87 | 21.79 | 13.94 | 33.67 |
|
83 |
+
| [NuNER Zero span](https://huggingface.co/numind/NuNER_Zero-span) | 40.26 | 22.51 | 14.27 | 32.52 \t|
|
84 |
+
| [GLiNER bio v0.1](https://huggingface.co/urchade/gliner_large_bio-v0.1) \t| 42.34 | 27.10 | 24.44 \t| 38.32 \t|
|
85 |
+
| [GLiNER bio v0.2](https://huggingface.co/urchade/gliner_large_bio-v0.2) \t| 38.66 | 25.36 \t| 17.02 \t| 32.42 \t|
|
86 |
+
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_large-v1) \t| 47.77 | 29.60 \t| 21.13 \t| 40.78 \t|
|
87 |
+
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_large-v2) \t| 37.38 | 21.42 \t| 15.44 \t| 33.11 \t|
|
88 |
+
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_large-v2.1) \t| 48.04 | 29.75 \t| 28.20 \t| 43.43 \t|
|
89 |
+
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_large_news-v2.1) \t| 48.99 | 31.79 \t| 33.77 \t| 45.13 \t|
|
90 |
+
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_large-v2.5) \t| 53.81 | 35.22 \t| 35.65 \t| 51.57 \t|
|
91 |
+
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-large-v1.0)** \t| **59.77**| **40.67** \t| **42.65** \t| **58.40** |
|
92 |
+
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-large-v1.0)** \t| 54.90 | 35.78 \t| 31.66 \t| 50.46 \t|
|
93 |
+
| **Base models** \t| \t| \t| \t| \t|
|
94 |
+
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_medium-v1) \t| 41.61 | 24.98 \t| 10.27 \t| 31.59 \t|
|
95 |
+
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_medium-v2) \t| 34.33 | 24.48 \t| 22.01 \t| 30.58 \t|
|
96 |
+
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_medium-v2.1) \t| 40.25 | 25.26 \t| 14.41 \t| 32.64 \t|
|
97 |
+
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_medium_news-v2.1) \t| 41.59 | 27.16 \t| 17.74 \t| 34.44 \t|
|
98 |
+
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_base-v2.5) \t| 46.49\t| 30.93 \t| 25.26 \t| 44.68 \t|
|
99 |
+
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-base-v1.0)** \t| 54.37| **36.20** \t| **41.61** \t| 53.05 |
|
100 |
+
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-base-v1.0)** \t| **58.31**\t| 35.22 \t| 32.39 \t| **54.91** \t|
|
101 |
+
| **Small models** \t| \t| \t| \t| \t|
|
102 |
+
| [GLiNER v1.0](https://huggingface.co/urchade/gliner_small-v1) \t| 40.99\t| 22.81 \t| 7.86 \t| 31.15 \t|
|
103 |
+
| [GLiNER v2.0](https://huggingface.co/urchade/gliner_small-v2) \t| 33.55\t| 21.12 \t| 15.76 \t| 28.78 \t|
|
104 |
+
| [GLiNER v2.1](https://huggingface.co/urchade/gliner_small-v2.1) \t| 38.45\t| 23.25 \t| 10.92 \t| 30.67 \t|
|
105 |
+
| [GLiNER news v2.1](https://huggingface.co/EmergentMethods/gliner_small_news-v2.1) \t| 39.15\t| 24.96 \t| 14.48 \t| 33.10 \t|
|
106 |
+
| [GLiNER v2.5](https://huggingface.co/gliner-community/gliner_small-v2.5) \t| 38.21\t| 28.53 \t| 18.01 \t| 36.88 \t|
|
107 |
+
| **[GLiNER-biomed](https://huggingface.co/Ihor/gliner-biomed-small-v1.0)** \t| 52.53| **34.49** \t| **38.17** \t| 50.87 |
|
108 |
+
| **[GLiNER-biomed-bi](https://huggingface.co/Ihor/gliner-biomed-bi-small-v1.0)** \t| **56.93**\t| 33.88 \t| 33.61 \t| **53.12** \t|
|
109 |
|
110 |
|
111 |
### Join Our Discord
|