Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- aaditya/Llama3-OpenBioLLM-8B
|
7 |
+
---
|
8 |
+
|
9 |
+
# OpenBioLLM-Text2Graph-8B
|
10 |
+
|
11 |
+
This model is a biomedical annotation model designed to generate named entity annotations from unlabeled biomedical text.
|
12 |
+
It was introduced in the paper [GLiNER-BioMed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition](https://arxiv.org/abs/2504.00676).
|
13 |
+
|
14 |
+
This model enables **high-throughput, cost-efficient synthetic biomedical NER data generation**, serving as the synthetic annotation backbone for [GLiNER-BioMed models](https://huggingface.co/collections/knowledgator/gliner-biomed-67ecf1b7cc62e673dbc8b57f).
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
+
import torch
|
21 |
+
|
22 |
+
model_name = "Ihor/OpenBioLLM-Text2Graph-8B"
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|end_of_text|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}"
|
26 |
+
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
model_name,
|
29 |
+
device_map="auto",
|
30 |
+
torch_dtype=torch.bfloat16
|
31 |
+
)
|
32 |
+
|
33 |
+
MESSAGES = [
|
34 |
+
{
|
35 |
+
"role": "system",
|
36 |
+
"content": (
|
37 |
+
"You are an advanced assistant trained to process biomedical text for Named Entity Recognition (NER) and Relation Extraction (RE). "
|
38 |
+
"Your task is to analyze user-provided text and provided entities selecting all unique and contextually relevant entities, and infer directed relationships. "
|
39 |
+
"between these entities based on the context. Ensure that all relations exist only between annotated entities. "
|
40 |
+
"Entities and relationships should be human-readable and natural, reflecting real-world concepts and connections. "
|
41 |
+
"Output the annotated data in JSON format, structured as follows:\n\n"
|
42 |
+
"""{"entities": [{"id": 0, "text": "ner_string_0", "type": "ner_type_string_0"}, {"id": 1, "text": "ner_string_1", "type": "ner_type_string_1"}], "relations": [{"head": 0, "tail": 1, "type": "re_type_string_0"}]}"""
|
43 |
+
"\n\nEnsure that the output captures all significant entities and their directed relationships in a clear and concise manner."
|
44 |
+
),
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"role": "user",
|
48 |
+
"content": (
|
49 |
+
'Here is a text input: "John received 3mg of aspirin." '
|
50 |
+
"""Here is the list of input entities: ['John', '3mg', 'aspirin']"""
|
51 |
+
"Analyze this text, select and classify the entities, and extract their relationships as per your instructions."
|
52 |
+
),
|
53 |
+
}
|
54 |
+
]
|
55 |
+
|
56 |
+
chat_prompt = tokenizer.apply_chat_template(
|
57 |
+
MESSAGES, tokenize=False, add_generation_prompt=True
|
58 |
+
)
|
59 |
+
|
60 |
+
inputs = tokenizer(chat_prompt, return_tensors="pt").to(model.device)
|
61 |
+
|
62 |
+
outputs = model.generate(
|
63 |
+
**inputs,
|
64 |
+
max_new_tokens=3000,
|
65 |
+
do_sample=False,
|
66 |
+
eos_token_id=tokenizer.eos_token_id,
|
67 |
+
pad_token_id=tokenizer.eos_token_id,
|
68 |
+
return_dict_in_generate=True
|
69 |
+
)
|
70 |
+
|
71 |
+
prompt_len = inputs["input_ids"].shape[-1]
|
72 |
+
generated_ids = outputs.sequences[0][prompt_len:]
|
73 |
+
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
74 |
+
print(response)
|
75 |
+
```
|
76 |
+
|
77 |
+
## Citation
|
78 |
+
|
79 |
+
If you use this model, please cite:
|
80 |
+
|
81 |
+
```bibtex
|
82 |
+
@misc{yazdani2025glinerbiomedsuiteefficientmodels,
|
83 |
+
title={GLiNER-BioMed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition},
|
84 |
+
author={Anthony Yazdani and Ihor Stepanov and Douglas Teodoro},
|
85 |
+
year={2025},
|
86 |
+
eprint={2504.00676},
|
87 |
+
archivePrefix={arXiv},
|
88 |
+
primaryClass={cs.CL},
|
89 |
+
url={https://arxiv.org/abs/2504.00676},
|
90 |
+
}
|
91 |
+
```
|