Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,132 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
**How to use the model**
|
6 |
+
|
7 |
+
To use the model with `transformer` package, see the example below:
|
8 |
+
```python
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
+
import torch
|
11 |
+
|
12 |
+
model_name = "Ihor/OpenBioLLM-Text2Graph-8B"
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|end_of_text|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}"
|
16 |
+
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
device_map="auto",
|
20 |
+
torch_dtype=torch.bfloat16
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
MESSAGES = [
|
25 |
+
{
|
26 |
+
"role": "system",
|
27 |
+
"content": (
|
28 |
+
"You are an advanced assistant trained to process biomedical text for Named Entity Recognition (NER) and Relation Extraction (RE). "
|
29 |
+
"Your task is to analyze user-provided text, identify all unique and contextually relevant entities, and infer directed relationships "
|
30 |
+
"between these entities based on the context. Ensure that all relations exist only between annotated entities. "
|
31 |
+
"Entities and relationships should be human-readable and natural, reflecting real-world concepts and connections. "
|
32 |
+
"Output the annotated data in JSON format, structured as follows:\n\n"
|
33 |
+
"""{"entities": [{"id": 0, "text": "ner_string_0", "type": "ner_type_string_0"}, {"id": 1, "text": "ner_string_1", "type": "ner_type_string_1"}], "relations": [{"head": 0, "tail": 1, "type": "re_type_string_0"}]}"""
|
34 |
+
"\n\nEnsure that the output captures all significant entities and their directed relationships in a clear and concise manner."
|
35 |
+
),
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"role": "user",
|
39 |
+
"content": (
|
40 |
+
'Here is a text input: "Subjects will receive a 100mL dose of IV saline every 6 hours for 24 hours. The first dose will be administered prior to anesthesia induction, approximately 30 minutes before skin incision. A total of 4 doses will be given." '
|
41 |
+
"Analyze this text, select and classify the entities, and extract their relationships as per your instructions."
|
42 |
+
),
|
43 |
+
},
|
44 |
+
]
|
45 |
+
|
46 |
+
# Build prompt text
|
47 |
+
chat_prompt = tokenizer.apply_chat_template(
|
48 |
+
MESSAGES, tokenize=False, add_generation_prompt=True
|
49 |
+
)
|
50 |
+
|
51 |
+
# Tokenize
|
52 |
+
inputs = tokenizer(chat_prompt, return_tensors="pt").to(model.device)
|
53 |
+
|
54 |
+
# Generate
|
55 |
+
outputs = model.generate(
|
56 |
+
**inputs,
|
57 |
+
max_new_tokens=3000,
|
58 |
+
do_sample=True,
|
59 |
+
eos_token_id=tokenizer.eos_token_id,
|
60 |
+
pad_token_id=tokenizer.eos_token_id,
|
61 |
+
return_dict_in_generate=True
|
62 |
+
)
|
63 |
+
|
64 |
+
# Decode ONLY the new tokens (skip the prompt tokens)
|
65 |
+
prompt_len = inputs["input_ids"].shape[-1]
|
66 |
+
generated_ids = outputs.sequences[0][prompt_len:]
|
67 |
+
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
68 |
+
print(response)
|
69 |
+
```
|
70 |
+
|
71 |
+
To use the model with `vllm` package, please refer to the example below:
|
72 |
+
```python
|
73 |
+
# !pip install vllm
|
74 |
+
|
75 |
+
from vllm import LLM, SamplingParams
|
76 |
+
from transformers import AutoTokenizer
|
77 |
+
|
78 |
+
MODEL_ID = "Ihor/OpenBioLLM-Text2Graph-8B"
|
79 |
+
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
|
81 |
+
tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|end_of_text|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}"
|
82 |
+
|
83 |
+
llm = LLM(model=MODEL_ID)
|
84 |
+
|
85 |
+
sampling_params = SamplingParams(
|
86 |
+
max_tokens=3000,
|
87 |
+
n=1,
|
88 |
+
best_of=1,
|
89 |
+
presence_penalty=0.0,
|
90 |
+
frequency_penalty=0.0,
|
91 |
+
repetition_penalty=1.0,
|
92 |
+
temperature=0.0,
|
93 |
+
top_p=1.0,
|
94 |
+
top_k=-1,
|
95 |
+
min_p=0.0,
|
96 |
+
seed=42,
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
MESSAGES = [
|
101 |
+
{
|
102 |
+
"role": "system",
|
103 |
+
"content": (
|
104 |
+
"You are an advanced assistant trained to process biomedical text for Named Entity Recognition (NER) and Relation Extraction (RE). "
|
105 |
+
"Your task is to analyze user-provided text, identify all unique and contextually relevant entities, and infer directed relationships "
|
106 |
+
"between these entities based on the context. Ensure that all relations exist only between annotated entities. "
|
107 |
+
"Entities and relationships should be human-readable and natural, reflecting real-world concepts and connections. "
|
108 |
+
"Output the annotated data in JSON format, structured as follows:\n\n"
|
109 |
+
"""{"entities": [{"id": 0, "text": "ner_string_0", "type": "ner_type_string_0"}, {"id": 1, "text": "ner_string_1", "type": "ner_type_string_1"}], "relations": [{"head": 0, "tail": 1, "type": "re_type_string_0"}]}"""
|
110 |
+
"\n\nEnsure that the output captures all significant entities and their directed relationships in a clear and concise manner."
|
111 |
+
),
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"role": "user",
|
115 |
+
"content": (
|
116 |
+
'Here is a text input: "Subjects will receive a 100mL dose of IV saline every 6 hours for 24 hours. The first dose will be administered prior to anesthesia induction, approximately 30 minutes before skin incision. A total of 4 doses will be given." '
|
117 |
+
"Analyze this text, select and classify the entities, and extract their relationships as per your instructions."
|
118 |
+
),
|
119 |
+
},
|
120 |
+
]
|
121 |
+
|
122 |
+
chat_prompt = tokenizer.apply_chat_template(
|
123 |
+
MESSAGES,
|
124 |
+
tokenize=False,
|
125 |
+
add_generation_prompt=True,
|
126 |
+
add_special_tokens=False,
|
127 |
+
)
|
128 |
+
|
129 |
+
outputs = llm.generate([chat_prompt], sampling_params)
|
130 |
+
response_text = outputs[0].outputs[0].text
|
131 |
+
print(response_text)
|
132 |
+
```
|