--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-dirQ-v1 results: [] --- # roberta-base-dirQ-v1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2229 - Precision: 0.8216 - Recall: 0.9257 - F1: 0.8705 - Accuracy: 0.9316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3481 | 1.0 | 976 | 0.2343 | 0.8003 | 0.9209 | 0.8564 | 0.9248 | | 0.1966 | 2.0 | 1952 | 0.2164 | 0.8124 | 0.9217 | 0.8636 | 0.9292 | | 0.1702 | 3.0 | 2928 | 0.2229 | 0.8216 | 0.9257 | 0.8705 | 0.9316 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1