{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c33b83c540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701611135228266374, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPP/Lv2/Eu6SIWOufrTfLQM8u65fkmoOAAAgD8AAIA/M52Avf73mj4uuoQ+J5mcvikjsD0DAqU9AAAAAAAAAABaF4W9NxpkPqqQijysFke+bPmevFZGDL0AAAAAAAAAAJri1DzDuQa6bcZSNxe4vTJPviM6fX50tgAAgD8AAIA/Zp/+PDh7zLvB+CS8AEeCPMJLMD0dxV+9AACAPwAAgD9NaVO9cSBGPomZAr40k1W+QrUVvQB2HjwAAAAAAAAAAJO1Sr6H2EA/qpqAva2pmL5C28297JOxPQAAAAAAAAAAOoQ0PhyCRD8Rt8u9FejavrmHfz0+lYW9AAAAAAAAAACQWYI+94gpP0Xigj2Krb2+4glePgVdNL0AAAAAAAAAAJqZKrtFK7U/z9IGvlTOsD1z/kM7GtDxPAAAAAAAAAAAQG+LvQO5oz5FflU9rEuavg20CD0VpZK8AAAAAAAAAADgu7E++A+Tvbjo/zxkWhs9YfKlvuNfprwAAAAAAAAAAMa6B76xZU4+D4QlPnaEWb7E0LY9xbltPQAAAAAAAAAAMwm8vG68oD877cm9NbTPvsESYbzKtxa8AAAAAAAAAABgOFm+t7JVP6qBpL3Hd5a+oPcYvncDAz4AAAAAAAAAAGZWQrsaVyc+Ga4VvUvOg74vySW8ULuwPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAuf0h/y5KMAWyUS+mMAXSUR0CXWcaTOgQIdX2UKGgGR0BtoXJaJQ+EaAdNBAFoCEdAl1qwmAskIHV9lChoBkdAcHkHp8neBWgHS/xoCEdAl1rJQcghbHV9lChoBkdAXMzbeuV5bGgHTegDaAhHQJdbCAWi1zB1fZQoaAZHQE0ZfLLZBcBoB0vVaAhHQJdcmrtE5Qx1fZQoaAZHQHFbS3b212JoB00FAWgIR0CXXOVU+9rXdX2UKGgGR0Bu0KGHpKSQaAdNBgFoCEdAl13MNH6MznV9lChoBkdAcLVVpKzzE2gHTSsBaAhHQJdePQJHAh11fZQoaAZHQHHphMWXTmZoB00jAWgIR0CXX1kxASnMdX2UKGgGR0BvNRPwd8zAaAdL9WgIR0CXYMRUWEbpdX2UKGgGR0By0MZGax5caAdNWwFoCEdAl2DXPiT+vXV9lChoBkdAcp3uRLbpNmgHTQ0BaAhHQJdhFe+mFal1fZQoaAZHQHC4w71ZkkNoB00yAWgIR0CXYTWqcVgydX2UKGgGR0Bw/oxQBPsSaAdNJAFoCEdAl2HAmVqveXV9lChoBkdAcKx1PFefI2gHTSQBaAhHQJdh8XP7el91fZQoaAZHQHIhv0ulGgBoB02vAWgIR0CXYqqaPS2IdX2UKGgGR0BxiUpjMFEBaAdNCwFoCEdAl2K2ce8wpXV9lChoBkdAcPDSR8twrGgHTTcBaAhHQJdjlXcQAdZ1fZQoaAZHQHGamBvrGBFoB004AWgIR0CXY7WN3np0dX2UKGgGR0ByiPOfNA1OaAdL/GgIR0CXZDlgMMJAdX2UKGgGR0BxW1SbYsd1aAdL92gIR0CXZOTpPhybdX2UKGgGR0Bw2SgQHzH0aAdNKQFoCEdAl2Upd4Vym3V9lChoBkdAbHkoTfzjFWgHTdsBaAhHQJdlotVaOgh1fZQoaAZHQHKAjundfsxoB00IAWgIR0CXZq8l5WzXdX2UKGgGR0BxkFf+jua4aAdNQAFoCEdAl2cq5Xlr/XV9lChoBkdAcTonVG0/nmgHTQoBaAhHQJdn9HZsbed1fZQoaAZHQG80FxXGOuJoB00MAWgIR0CXaA4DcM3IdX2UKGgGR0BxxK/vfCQ+aAdNBwFoCEdAl2jKg2606nV9lChoBkdAcgukp7TlT2gHTSQBaAhHQJdo7vhIe5p1fZQoaAZHQHGH2j0th/loB004AWgIR0CXaaFF2FFldX2UKGgGR0BxRFfTkQwsaAdNGQFoCEdAl2pFqveP73V9lChoBkdAcYdSPluFYmgHS/1oCEdAl2pslkYoAnV9lChoBkdAcJ7q6e5Fw2gHTTsBaAhHQJdqgu7HyVh1fZQoaAZHQEjirnTy8SRoB0vOaAhHQJdqgk9lmOF1fZQoaAZHQG9HlVcUuctoB00DAWgIR0CXarHf/FR6dX2UKGgGR0Bw9WQJXyRTaAdNAAFoCEdAl2wFCw8nu3V9lChoBkdAb9y7bL2YfGgHTSUBaAhHQJdsD7TDwYt1fZQoaAZHQHDo2WpqASZoB01fAWgIR0CXbCAtWdVedX2UKGgGR0BvvvkWAPNFaAdNJQFoCEdAl213668QI3V9lChoBkdAcIhNahYeT2gHTQUBaAhHQJduOLbYbsF1fZQoaAZHQG8W+rU9ZA9oB0v+aAhHQJdu8ophF3J1fZQoaAZHQHBlHSWqtHRoB00yAWgIR0CXbwdz4k/sdX2UKGgGR0Bx0xswco6TaAdNPgFoCEdAl4KQpKBd2XV9lChoBkdAbr73C9AX22gHTRsBaAhHQJeCm9ugpSd1fZQoaAZHQHK9Jb2USqVoB00lAWgIR0CXguFPSDywdX2UKGgGR0BvxZBLPD51aAdNCQFoCEdAl4L0R3/xUnV9lChoBkdAcXBLB9Cu2mgHS/RoCEdAl4NQPiDM/3V9lChoBkdAcD1hUBGQS2gHS/RoCEdAl4NRT850bXV9lChoBkdAcY54k/r0KGgHS/loCEdAl4O7GaQV9HV9lChoBkdAbdKMuOCGvmgHTQwBaAhHQJeEBHz6JqJ1fZQoaAZHQG1onbAUL2JoB006AWgIR0CXhVxIatLddX2UKGgGR0Bxbi7tiQT3aAdL/WgIR0CXhbx3V09ydX2UKGgGR0BxcDqv/zasaAdNAwFoCEdAl4XOTeO4onV9lChoBkdAcmDQEZBLPGgHS+1oCEdAl4b8ebNKRXV9lChoBkdAcmrMnJDE32gHTSsBaAhHQJeHMEHMUyp1fZQoaAZHQG/OtKZlWfdoB00SAWgIR0CXiT4lQdjodX2UKGgGR0BxFgpqh11XaAdNHQFoCEdAl4rO3Ytg8nV9lChoBkdAbzy5I6KceGgHTTYBaAhHQJeLy0QbuMN1fZQoaAZHQHK/1IiC8OFoB0v9aAhHQJeMH2WY4Q11fZQoaAZHQHC6vNRm9QJoB00HAWgIR0CXjDjD8+A3dX2UKGgGR0Bv7RPKuB+XaAdNDwFoCEdAl4ydzKcNIHV9lChoBkdAcdZUNrj5sWgHTTQBaAhHQJeNhjFyaNN1fZQoaAZHQHGAxy0a6z5oB00TAWgIR0CXjZlf7aZhdX2UKGgGR0Bw0tQWN3nqaAdL6GgIR0CXjdZFG5MDdX2UKGgGR0BymWpHZsbeaAdNLQFoCEdAl44Q6uGKynV9lChoBkdAcjCoAXEZSGgHTTkBaAhHQJeOD3Hq/ud1fZQoaAZHQHM+KDoQnQZoB00BAWgIR0CXjjpAUtZndX2UKGgGR0ByELA/LTx5aAdNDQFoCEdAl47MPatcOnV9lChoBkdAcKLzUqhDgWgHTWQBaAhHQJePGgezUqh1fZQoaAZHQHCUkqUeMhpoB00oAWgIR0CXkJKiwjdIdX2UKGgGR0BxZI6aLGaQaAdNOAFoCEdAl5DbSeAd4nV9lChoBkdAbzs+t8uzyGgHTQIBaAhHQJeRIn9ehPF1fZQoaAZHQHGE9sJpnHxoB0vtaAhHQJeSed/axot1fZQoaAZHQHBspUT+NtJoB0v/aAhHQJeSszHjp9t1fZQoaAZHQHG64Jmdy1hoB0v+aAhHQJeTEyYXwb51fZQoaAZHQHK30wFkhA5oB000AWgIR0CXk5a2WpqAdX2UKGgGR0ByURQZXMhYaAdNBAFoCEdAl5T+01IiDHV9lChoBkdAbY5WjoIOY2gHS/1oCEdAl5UJZGKAKHV9lChoBkdAcD9elKsdUGgHS/9oCEdAl5UaT0QK8nV9lChoBkdAcY6toBaLXWgHTTgBaAhHQJeVPjR2KVJ1fZQoaAZHQHBkq4x1xKhoB00pAWgIR0CXla/LTx5LdX2UKGgGR0By22zHCGeuaAdNPAFoCEdAl5Y+jqOcUnV9lChoBkdAcfnRSgoPTWgHTRQBaAhHQJeWeM5wOvt1fZQoaAZHQHDjHdweeWhoB00HAWgIR0CXlnUdaMaTdX2UKGgGR0Bx6Fa0QbuMaAdNUgFoCEdAl5dgwCbMHXV9lChoBkdAbva67NB4U2gHTQMBaAhHQJeYRIFvAGl1fZQoaAZHQGy5mrjo6jpoB00YAWgIR0CXmE09yLhrdX2UKGgGR0ByQ1R+BpYcaAdNBgFoCEdAl5mi75Ec83V9lChoBkdAcsjOt4iX6mgHTUsBaAhHQJeZ43Q2MsJ1fZQoaAZHQG/ctIK+i8FoB00LAWgIR0CXmlnV5KODdX2UKGgGR0Bve2i8FpwkaAdNHwFoCEdAl5qVpTMq0HV9lChoBkdAcOnZhKDkEWgHTRMBaAhHQJebFnoPkJd1fZQoaAZHQHF5mu1WsBBoB0vmaAhHQJebF+lTFVF1fZQoaAZHQHB3fTXrdFhoB0vvaAhHQJebiFWXC0p1fZQoaAZHQHH7PphWo3toB00dAWgIR0CXnLc8TzundX2UKGgGR0Bt7yFAVwglaAdL/WgIR0CXnUcslLOBdX2UKGgGR0BxDMPDpC8faAdNIwFoCEdAl52Ie5nUUnV9lChoBkdAcqYU1hsqKGgHTQsBaAhHQJedqf16E8J1fZQoaAZHQHJTXHvMKTloB01AAWgIR0CXn5E6T4cndX2UKGgGR0BzNdkNFz+4aAdNKAFoCEdAl6AtadMCcXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}