File size: 24,603 Bytes
692ce93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import logging
import math
import os
import re
from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import nn
from torchvision.ops import roi_align
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
Qwen2Config,
Qwen2ForCausalLM,
StoppingCriteria,
StoppingCriteriaList,
)
from transformers.generation.utils import GenerateOutput
from transformers.utils import logging, strtobool
from .clip import CLIPVisionTower
from .convnext import ConvNextVisionEncoder
logger = logging.get_logger(__name__)
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN_INDEX = 0
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
# For Objects
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
DEFAULT_OBJECT_INDEX = -300
# For Grounding
DEFAULT_GROUNDING_START = "<ground>"
DEFAULT_GROUNDING_END = "</ground>"
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
def is_fsdp_enabled():
return (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
)
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": "identity"}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
def build_vision_projector(config, start_hidden_size, delay_load=False, **kwargs):
projector_type = "mlp2x_gelu"
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(start_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
return nn.Sequential(*modules)
if projector_type == "identity":
return IdentityMap()
raise ValueError(f"Unknown projector type: {projector_type}")
def get_token_slices(input_ids: torch.Tensor):
"""
Get slices of tokens based on special markers in the input tensor.
Args:
input_ids (torch.Tensor): A tensor of token IDs where IMAGE_TOKEN_INDEX represents an image token,
DEFAULT_OBJECT_INDEX represents an object token, and all other values represent text tokens.
Returns:
List[Dict[str, Any]]: A list of dictionaries where each dictionary contains the type of the
token slice ('text', 'image', 'object') and the span as a list of start and end indices.
"""
# define type markers and corresponding types
type_map = {IMAGE_TOKEN_INDEX: "image", DEFAULT_OBJECT_INDEX: "object"}
# find the positions of special markers
image_indices = torch.where(input_ids == IMAGE_TOKEN_INDEX)[0]
object_indices = torch.where(input_ids == DEFAULT_OBJECT_INDEX)[0]
if len(object_indices) > 0:
has_object = True
else:
has_object = False
# merge all the positions of special markers
special_indices = torch.cat((image_indices, object_indices))
special_indices, _ = torch.sort(special_indices)
special_tokens = input_ids[special_indices]
slices = []
start_idx = 0
for i, idx in enumerate(special_indices):
if start_idx < idx:
slices.append({"type": "text", "span": [start_idx, idx.item()]})
token_type = type_map[special_tokens[i].item()]
slices.append({"type": token_type, "span": [idx.item(), idx.item() + 1]})
start_idx = idx.item() + 1
if start_idx < len(input_ids):
slices.append({"type": "text", "span": [start_idx, len(input_ids)]})
return slices, has_object
class StopWordStoppingCriteria(StoppingCriteria):
"""StopWord stopping criteria."""
def __init__(self, tokenizer, stop_word):
self.tokenizer = tokenizer
self.stop_word = stop_word
self.length = len(self.stop_word)
def __call__(self, input_ids, *args, **kwargs) -> bool:
cur_text = self.tokenizer.decode(input_ids[0])
cur_text = cur_text.replace("\r", "").replace("\n", "")
return cur_text[-self.length :] == self.stop_word
def get_stop_criteria(
tokenizer,
stop_words=[],
):
stop_criteria = StoppingCriteriaList()
for word in stop_words:
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
return stop_criteria
def gen_sineembed_for_position(pos_tensor, dim_of_pos_feats):
"""Generate sine position embedding from a position tensor.
Args:
pos_tensor (torch.Tensor): shape: [batch_size, N, 4]. the last dimension is [cx, cy, w, h] in
normalized coordinates in range [0, 1].
out_dim (int): the output dimension of the position embedding.
Returns:
pos (torch.Tensor): shape: [batch_size, N, out_dim].
"""
scale = 2 * math.pi
dim_t = torch.arange(
dim_of_pos_feats, dtype=torch.float32, device=pos_tensor.device
)
dim_t = 10000 ** (2 * (dim_t // 2) / dim_of_pos_feats)
x_embed = pos_tensor[:, :, 0] * scale
y_embed = pos_tensor[:, :, 1] * scale
pos_x = x_embed[:, :, None] / dim_t
pos_y = y_embed[:, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3
).flatten(2)
pos_y = torch.stack(
(pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3
).flatten(2)
if pos_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=2)
elif pos_tensor.size(-1) == 4:
w_embed = pos_tensor[:, :, 2] * scale
pos_w = w_embed[:, :, None] / dim_t
pos_w = torch.stack(
(pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3
).flatten(2)
h_embed = pos_tensor[:, :, 3] * scale
pos_h = h_embed[:, :, None] / dim_t
pos_h = torch.stack(
(pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3
).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
else:
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
return pos
class MultiLevelROIVisualPrompt(nn.Module):
"""Initialize the MultiLevelROIVisualPrompt.
Args:
output_size (Optional[int]): The size of the output. Default is None.
channel_per_level (List[int]): List of channels per level. Default is [192, 384, 768, 1536].
spatial_scale (Optional[float]): The spatial scale factor. Default is None.
with_additional_projection (bool): Whether to use additional projection. Default is False.
visual_prompt_hidden_size (int): The hidden size of the visual prompt. Default is 1024.
add_pos_embedding (bool): Whether to add position embedding. Default is False.
pos_embedding_dim (int): The dimension of the position embedding. Default is 1024.
"""
def __init__(
self,
output_size: int = None,
channel_per_level: List[int] = [192, 384, 768, 1536],
spatail_scale: float = None,
add_pos_embedding: bool = False,
pos_embedding_dim: int = 1024,
):
super(MultiLevelROIVisualPrompt, self).__init__()
self.output_size = output_size
self.channel_per_level = channel_per_level
self.spatail_scale = spatail_scale
self.add_pos_embedding = add_pos_embedding
self.pos_embedding_dim = pos_embedding_dim
def __call__(
self,
multi_level_features: List[torch.Tensor],
boxes: Union[torch.Tensor, List[torch.Tensor]],
) -> torch.Tensor:
"""Performs Region of Interest (RoI) Align operator on multi-level features. The RoI
feature on each scale will go through a different linear layer for projection. Different
RoI features will be summed up and then average pooled.
Args:
multi_level_features (Listp[Tensor[N, C, H, W]]): Feature maps from different levels
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from.
Returns:
Tensor[1, K, C]: The output tensor that has the shape KxC, where K is the number of RoIs
"""
boxes[0] = boxes[0].float()
concat_multi_level_feature = []
max_height = max([feature.shape[2] for feature in multi_level_features])
max_width = max([feature.shape[3] for feature in multi_level_features])
# interpolate to the same size
for level, feature in enumerate(multi_level_features):
if level != 0:
concat_multi_level_feature.append(
F.interpolate(
feature.float(),
size=(max_height, max_width),
mode="bilinear",
align_corners=False,
)
)
else:
concat_multi_level_feature.append(feature.float())
concat_multi_level_feature = torch.cat(concat_multi_level_feature, dim=1)
out_box_feat = roi_align(
concat_multi_level_feature,
boxes,
output_size=self.output_size,
spatial_scale=self.spatail_scale,
)
# Average Pooling -> n,c -> 1,n,c
out_box_feat = out_box_feat.mean(dim=(2, 3)).reshape(
1, out_box_feat.shape[0], out_box_feat.shape[1]
)
if self.add_pos_embedding:
# note that this boxes is in xyxy, unormalized format, so we need to normalize it first
boxes = boxes[0] # (N, 4)
boxes = boxes.to(out_box_feat.dtype)
original_img_width = max_width / self.spatail_scale
original_img_height = max_height / self.spatail_scale
boxes[:, [0, 2]] = boxes[:, [0, 2]] / original_img_width
boxes[:, [1, 3]] = boxes[:, [1, 3]] / original_img_height
# convert from xyxy to cx, cy, w, h
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
pos_embed = gen_sineembed_for_position(
boxes.unsqueeze(0), self.pos_embedding_dim // 4
)
out_box_feat = out_box_feat + pos_embed
return out_box_feat
class RexSeekQwenConfig(Qwen2Config):
model_type = "rexseek_qwen"
class RexSeekQwenForCausalLM(Qwen2ForCausalLM):
config_class = RexSeekQwenConfig
def __init__(self, config):
super().__init__(config)
# low resolusion vision encoder
vision_tower = getattr(
config,
"mm_vision_tower",
getattr(config, "vision_tower", None),
)
self.vision_tower = CLIPVisionTower(
vision_tower,
args=config,
)
# high resolusion vision encoder
self.vision_tower_aux = ConvNextVisionEncoder()
# vision projector
self.mm_projector = build_vision_projector(
config, start_hidden_size=2560
) # projector for vision_tower
# projector for object token
self.mm_object_projector = build_vision_projector(
config, start_hidden_size=2880
)
# visual prompt encoder
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.box_encoder = MultiLevelROIVisualPrompt(
output_size=7,
channel_per_level=[192, 384, 768, 1536], # ConvNeXt Large
spatail_scale=192 / 768,
add_pos_embedding=True,
pos_embedding_dim=2880,
)
self.post_init()
print("model initialized")
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_vision_tower_aux(self):
vision_tower_aux = getattr(self, "vision_tower_aux", None)
if type(vision_tower_aux) is list:
vision_tower_aux = vision_tower_aux[0]
return vision_tower_aux
def get_model(self):
return self.model
def encode_images(self, images, images_aux):
low_res_feat = self.get_vision_tower()(images)
aux_output = self.get_vision_tower_aux()(images_aux)
visual_outputs_aux = aux_output["image_features"]
high_res_feat = aux_output["last_feat"] # (B, 1536, 24, 24)
# concat the low res features with the high res features
b, c, h, w = high_res_feat.shape # (2, 1536, 24, 24)
_, _, d = low_res_feat.shape # (2, 576, 1024)
high_res_feat = high_res_feat.view(b, c, h * w).transpose(1, 2)
image_features = torch.cat((low_res_feat, high_res_feat), dim=-1)
image_features = self.mm_projector(image_features)
return image_features, visual_outputs_aux
def encode_objects(
self, bboxes, visual_outputs_aux, dtype, num_gt_boxes_per_image=None
):
"""Encode object features from bounding boxes.
Args:
bboxes (torch.Tensor): bounding boxes in the shape of (N, 4)
image_features_before_proj (torch.Tensor): image features in the shape of (N, hidden_size)
Returns:
torch.Tensor: object features in the shape of (N, hidden_size)
"""
bbox_visual_outputs = []
for batch_idx, boxes in enumerate(bboxes):
num_box = (
num_gt_boxes_per_image[batch_idx]
if num_gt_boxes_per_image is not None
else len(boxes)
)
boxes = boxes[:num_box]
if len(boxes) == 0:
bbox_visual_outputs.append(None)
continue
multi_level_aux_features = [
visual_output_aux[batch_idx].unsqueeze(0)
for visual_output_aux in visual_outputs_aux
]
out_vp_feat = self.box_encoder(
multi_level_aux_features,
[boxes],
).squeeze(0)
out_vp_feat = out_vp_feat.to(dtype)
out_vp_feat = self.mm_object_projector(out_vp_feat)
bbox_visual_outputs.append(out_vp_feat)
# b,n,c
return bbox_visual_outputs
def prepare_inputs_labels_for_multimodal(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
pixel_values=None,
pixel_values_aux=None,
gt_boxes=None,
num_gt_boxes_per_image=None,
):
if pixel_values is None:
return (
input_ids,
position_ids,
attention_mask,
past_key_values,
None,
labels,
)
pixel_values, visual_outputs_aux = self.encode_images(
pixel_values, pixel_values_aux
) # (B, 576, 2048)
if gt_boxes is not None:
bbox_feats = self.encode_objects(
gt_boxes, visual_outputs_aux, pixel_values.dtype, num_gt_boxes_per_image
)
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool() # padding mask in shaoe (B, L)
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
cur_object_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = pixel_values[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
cur_object_idx += 1
continue
cur_labels = labels[batch_idx]
token_slices, has_object = get_token_slices(cur_input_ids)
result_input_embeddings = []
result_output_labels = []
cur_gt_bnox_indice = 0
cur_object_features = None
for slice in token_slices:
slice_type = slice["type"]
slice_span = slice["span"]
if slice_type == "text":
cur_input_ids_noim = cur_input_ids[slice_span[0] : slice_span[1]]
cur_labels_noim = cur_labels[slice_span[0] : slice_span[1]]
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids_noim)
result_input_embeddings.append(cur_input_embeds)
result_output_labels.append(cur_labels_noim)
elif slice_type == "image":
cur_input_embeds = pixel_values[cur_image_idx]
result_input_embeddings.append(cur_input_embeds)
result_output_labels.append(
torch.full(
(cur_input_embeds.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_image_idx += 1
elif slice_type == "object":
try:
result_input_embeddings.append(
bbox_feats[cur_object_idx][cur_gt_bnox_indice].unsqueeze(0)
)
except:
raise ValueError(
f"current boxe_feats.shape: {bbox_feats[cur_object_idx].shape}, "
)
cur_gt_bnox_indice += 1
result_output_labels.append(
torch.full(
(1,),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_object_idx += 1
result_input_embeddings = torch.cat(result_input_embeddings)
result_output_labels = torch.cat(result_output_labels)
assert len(result_output_labels) == len(result_input_embeddings)
new_input_embeds.append(result_input_embeddings)
new_labels.append(result_output_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(
self.config, "tokenizer_model_max_length", None
)
if tokenizer_model_max_length is not None:
new_input_embeds = [
x[:tokenizer_model_max_length] for x in new_input_embeds
]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_input_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return (
None,
position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor],
pixel_values: Optional[torch.Tensor],
pixel_values_aux: Optional[torch.Tensor],
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
if inputs_embeds is None:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
gt_boxes = kwargs.pop("gt_boxes", None)
num_gt_boxes_per_image = kwargs.pop("num_gt_boxes_per_image", None)
if pixel_values is not None:
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = (
self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
past_key_values=None,
labels=None,
pixel_values=pixel_values,
pixel_values_aux=pixel_values_aux,
gt_boxes=gt_boxes,
num_gt_boxes_per_image=num_gt_boxes_per_image,
)
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs,
)
AutoConfig.register("rexseek_qwen", RexSeekQwenConfig)
AutoModelForCausalLM.register(RexSeekQwenConfig, RexSeekQwenForCausalLM)
|