File size: 24,603 Bytes
692ce93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import logging
import math
import os
import re
from typing import List, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import nn
from torchvision.ops import roi_align
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
    Qwen2Config,
    Qwen2ForCausalLM,
    StoppingCriteria,
    StoppingCriteriaList,
)
from transformers.generation.utils import GenerateOutput
from transformers.utils import logging, strtobool

from .clip import CLIPVisionTower
from .convnext import ConvNextVisionEncoder

logger = logging.get_logger(__name__)

XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN_INDEX = 0
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"

# For Objects
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
DEFAULT_OBJECT_INDEX = -300

# For Grounding
DEFAULT_GROUNDING_START = "<ground>"
DEFAULT_GROUNDING_END = "</ground>"
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"


def is_fsdp_enabled():
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
    )


class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": "identity"}


class SimpleResBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.pre_norm = nn.LayerNorm(channels)

        self.proj = nn.Sequential(
            nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
        )

    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)


def build_vision_projector(config, start_hidden_size, delay_load=False, **kwargs):
    projector_type = "mlp2x_gelu"

    mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(start_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return nn.Sequential(*modules)

    if projector_type == "identity":
        return IdentityMap()

    raise ValueError(f"Unknown projector type: {projector_type}")


def get_token_slices(input_ids: torch.Tensor):
    """
    Get slices of tokens based on special markers in the input tensor.

    Args:
        input_ids (torch.Tensor): A tensor of token IDs where IMAGE_TOKEN_INDEX represents an image token,
            DEFAULT_OBJECT_INDEX represents an object token, and all other values represent text tokens.

    Returns:
        List[Dict[str, Any]]: A list of dictionaries where each dictionary contains the type of the
            token slice ('text', 'image', 'object') and the span as a list of start and end indices.
    """
    # define type markers and corresponding types
    type_map = {IMAGE_TOKEN_INDEX: "image", DEFAULT_OBJECT_INDEX: "object"}

    # find the positions of special markers
    image_indices = torch.where(input_ids == IMAGE_TOKEN_INDEX)[0]
    object_indices = torch.where(input_ids == DEFAULT_OBJECT_INDEX)[0]
    if len(object_indices) > 0:
        has_object = True
    else:
        has_object = False

    # merge all the positions of special markers
    special_indices = torch.cat((image_indices, object_indices))
    special_indices, _ = torch.sort(special_indices)
    special_tokens = input_ids[special_indices]

    slices = []
    start_idx = 0

    for i, idx in enumerate(special_indices):
        if start_idx < idx:
            slices.append({"type": "text", "span": [start_idx, idx.item()]})
        token_type = type_map[special_tokens[i].item()]
        slices.append({"type": token_type, "span": [idx.item(), idx.item() + 1]})
        start_idx = idx.item() + 1

    if start_idx < len(input_ids):
        slices.append({"type": "text", "span": [start_idx, len(input_ids)]})

    return slices, has_object


class StopWordStoppingCriteria(StoppingCriteria):
    """StopWord stopping criteria."""

    def __init__(self, tokenizer, stop_word):
        self.tokenizer = tokenizer
        self.stop_word = stop_word
        self.length = len(self.stop_word)

    def __call__(self, input_ids, *args, **kwargs) -> bool:
        cur_text = self.tokenizer.decode(input_ids[0])
        cur_text = cur_text.replace("\r", "").replace("\n", "")
        return cur_text[-self.length :] == self.stop_word


def get_stop_criteria(
    tokenizer,
    stop_words=[],
):
    stop_criteria = StoppingCriteriaList()
    for word in stop_words:
        stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
    return stop_criteria


def gen_sineembed_for_position(pos_tensor, dim_of_pos_feats):
    """Generate sine position embedding from a position tensor.

    Args:
        pos_tensor (torch.Tensor): shape: [batch_size, N, 4]. the last dimension is [cx, cy, w, h] in
            normalized coordinates in range [0, 1].
        out_dim (int): the output dimension of the position embedding.

    Returns:
        pos (torch.Tensor): shape: [batch_size, N, out_dim].
    """
    scale = 2 * math.pi
    dim_t = torch.arange(
        dim_of_pos_feats, dtype=torch.float32, device=pos_tensor.device
    )
    dim_t = 10000 ** (2 * (dim_t // 2) / dim_of_pos_feats)
    x_embed = pos_tensor[:, :, 0] * scale
    y_embed = pos_tensor[:, :, 1] * scale
    pos_x = x_embed[:, :, None] / dim_t
    pos_y = y_embed[:, :, None] / dim_t
    pos_x = torch.stack(
        (pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3
    ).flatten(2)
    pos_y = torch.stack(
        (pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3
    ).flatten(2)
    if pos_tensor.size(-1) == 2:
        pos = torch.cat((pos_y, pos_x), dim=2)
    elif pos_tensor.size(-1) == 4:
        w_embed = pos_tensor[:, :, 2] * scale
        pos_w = w_embed[:, :, None] / dim_t
        pos_w = torch.stack(
            (pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3
        ).flatten(2)

        h_embed = pos_tensor[:, :, 3] * scale
        pos_h = h_embed[:, :, None] / dim_t
        pos_h = torch.stack(
            (pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3
        ).flatten(2)

        pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
    else:
        raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
    return pos


class MultiLevelROIVisualPrompt(nn.Module):
    """Initialize the MultiLevelROIVisualPrompt.

    Args:
        output_size (Optional[int]): The size of the output. Default is None.
        channel_per_level (List[int]): List of channels per level. Default is [192, 384, 768, 1536].
        spatial_scale (Optional[float]): The spatial scale factor. Default is None.
        with_additional_projection (bool): Whether to use additional projection. Default is False.
        visual_prompt_hidden_size (int): The hidden size of the visual prompt. Default is 1024.
        add_pos_embedding (bool): Whether to add position embedding. Default is False.
        pos_embedding_dim (int): The dimension of the position embedding. Default is 1024.
    """

    def __init__(
        self,
        output_size: int = None,
        channel_per_level: List[int] = [192, 384, 768, 1536],
        spatail_scale: float = None,
        add_pos_embedding: bool = False,
        pos_embedding_dim: int = 1024,
    ):
        super(MultiLevelROIVisualPrompt, self).__init__()
        self.output_size = output_size
        self.channel_per_level = channel_per_level
        self.spatail_scale = spatail_scale
        self.add_pos_embedding = add_pos_embedding
        self.pos_embedding_dim = pos_embedding_dim

    def __call__(
        self,
        multi_level_features: List[torch.Tensor],
        boxes: Union[torch.Tensor, List[torch.Tensor]],
    ) -> torch.Tensor:
        """Performs Region of Interest (RoI) Align operator on multi-level features. The RoI
        feature on each scale will go through a different linear layer for projection. Different
        RoI features will be summed up and then average pooled.

        Args:
            multi_level_features (Listp[Tensor[N, C, H, W]]): Feature maps from different levels
            boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
                format where the regions will be taken from.
        Returns:
            Tensor[1, K, C]: The output tensor that has the shape KxC, where K is the number of RoIs
        """
        boxes[0] = boxes[0].float()
        concat_multi_level_feature = []
        max_height = max([feature.shape[2] for feature in multi_level_features])
        max_width = max([feature.shape[3] for feature in multi_level_features])
        # interpolate to the same size
        for level, feature in enumerate(multi_level_features):
            if level != 0:
                concat_multi_level_feature.append(
                    F.interpolate(
                        feature.float(),
                        size=(max_height, max_width),
                        mode="bilinear",
                        align_corners=False,
                    )
                )
            else:
                concat_multi_level_feature.append(feature.float())
        concat_multi_level_feature = torch.cat(concat_multi_level_feature, dim=1)

        out_box_feat = roi_align(
            concat_multi_level_feature,
            boxes,
            output_size=self.output_size,
            spatial_scale=self.spatail_scale,
        )

        # Average Pooling -> n,c -> 1,n,c
        out_box_feat = out_box_feat.mean(dim=(2, 3)).reshape(
            1, out_box_feat.shape[0], out_box_feat.shape[1]
        )
        if self.add_pos_embedding:
            # note that this boxes is in xyxy, unormalized format, so we need to normalize it first
            boxes = boxes[0]  # (N, 4)
            boxes = boxes.to(out_box_feat.dtype)
            original_img_width = max_width / self.spatail_scale
            original_img_height = max_height / self.spatail_scale
            boxes[:, [0, 2]] = boxes[:, [0, 2]] / original_img_width
            boxes[:, [1, 3]] = boxes[:, [1, 3]] / original_img_height
            # convert from xyxy to cx, cy, w, h
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
            boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
            boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
            pos_embed = gen_sineembed_for_position(
                boxes.unsqueeze(0), self.pos_embedding_dim // 4
            )
            out_box_feat = out_box_feat + pos_embed

        return out_box_feat


class RexSeekQwenConfig(Qwen2Config):
    model_type = "rexseek_qwen"


class RexSeekQwenForCausalLM(Qwen2ForCausalLM):

    config_class = RexSeekQwenConfig

    def __init__(self, config):
        super().__init__(config)
        # low resolusion vision encoder
        vision_tower = getattr(
            config,
            "mm_vision_tower",
            getattr(config, "vision_tower", None),
        )
        self.vision_tower = CLIPVisionTower(
            vision_tower,
            args=config,
        )
        # high resolusion vision encoder
        self.vision_tower_aux = ConvNextVisionEncoder()

        # vision projector
        self.mm_projector = build_vision_projector(
            config, start_hidden_size=2560
        )  # projector for vision_tower
        # projector for object token
        self.mm_object_projector = build_vision_projector(
            config, start_hidden_size=2880
        )
        # visual prompt encoder
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        # Initialize weights and apply final processing
        self.box_encoder = MultiLevelROIVisualPrompt(
            output_size=7,
            channel_per_level=[192, 384, 768, 1536],  # ConvNeXt Large
            spatail_scale=192 / 768,
            add_pos_embedding=True,
            pos_embedding_dim=2880,
        )
        self.post_init()
        print("model initialized")

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_vision_tower_aux(self):
        vision_tower_aux = getattr(self, "vision_tower_aux", None)
        if type(vision_tower_aux) is list:
            vision_tower_aux = vision_tower_aux[0]
        return vision_tower_aux

    def get_model(self):
        return self.model

    def encode_images(self, images, images_aux):
        low_res_feat = self.get_vision_tower()(images)
        aux_output = self.get_vision_tower_aux()(images_aux)
        visual_outputs_aux = aux_output["image_features"]
        high_res_feat = aux_output["last_feat"]  # (B, 1536, 24, 24)
        # concat the low res features with the high res features
        b, c, h, w = high_res_feat.shape  # (2, 1536, 24, 24)
        _, _, d = low_res_feat.shape  # (2, 576, 1024)
        high_res_feat = high_res_feat.view(b, c, h * w).transpose(1, 2)
        image_features = torch.cat((low_res_feat, high_res_feat), dim=-1)
        image_features = self.mm_projector(image_features)
        return image_features, visual_outputs_aux

    def encode_objects(
        self, bboxes, visual_outputs_aux, dtype, num_gt_boxes_per_image=None
    ):
        """Encode object features from bounding boxes.

        Args:
            bboxes (torch.Tensor): bounding boxes in the shape of (N, 4)
            image_features_before_proj (torch.Tensor): image features in the shape of (N, hidden_size)

        Returns:
            torch.Tensor: object features in the shape of (N, hidden_size)
        """
        bbox_visual_outputs = []
        for batch_idx, boxes in enumerate(bboxes):
            num_box = (
                num_gt_boxes_per_image[batch_idx]
                if num_gt_boxes_per_image is not None
                else len(boxes)
            )
            boxes = boxes[:num_box]
            if len(boxes) == 0:
                bbox_visual_outputs.append(None)
                continue
            multi_level_aux_features = [
                visual_output_aux[batch_idx].unsqueeze(0)
                for visual_output_aux in visual_outputs_aux
            ]
            out_vp_feat = self.box_encoder(
                multi_level_aux_features,
                [boxes],
            ).squeeze(0)
            out_vp_feat = out_vp_feat.to(dtype)
            out_vp_feat = self.mm_object_projector(out_vp_feat)
            bbox_visual_outputs.append(out_vp_feat)
        # b,n,c
        return bbox_visual_outputs

    def prepare_inputs_labels_for_multimodal(
        self,
        input_ids,
        position_ids,
        attention_mask,
        past_key_values,
        labels,
        pixel_values=None,
        pixel_values_aux=None,
        gt_boxes=None,
        num_gt_boxes_per_image=None,
    ):
        if pixel_values is None:
            return (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                None,
                labels,
            )
        pixel_values, visual_outputs_aux = self.encode_images(
            pixel_values, pixel_values_aux
        )  # (B, 576, 2048)
        if gt_boxes is not None:
            bbox_feats = self.encode_objects(
                gt_boxes, visual_outputs_aux, pixel_values.dtype, num_gt_boxes_per_image
            )
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()  # padding mask in shaoe (B, L)
        if position_ids is None:
            position_ids = torch.arange(
                0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
            )
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        input_ids = [
            cur_input_ids[cur_attention_mask]
            for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
        ]
        labels = [
            cur_labels[cur_attention_mask]
            for cur_labels, cur_attention_mask in zip(labels, attention_mask)
        ]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        cur_object_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = pixel_values[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat(
                    [cur_input_embeds_1, cur_image_features[0:0]], dim=0
                )
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                cur_object_idx += 1
                continue

            cur_labels = labels[batch_idx]
            token_slices, has_object = get_token_slices(cur_input_ids)
            result_input_embeddings = []
            result_output_labels = []
            cur_gt_bnox_indice = 0
            cur_object_features = None
            for slice in token_slices:
                slice_type = slice["type"]
                slice_span = slice["span"]
                if slice_type == "text":
                    cur_input_ids_noim = cur_input_ids[slice_span[0] : slice_span[1]]
                    cur_labels_noim = cur_labels[slice_span[0] : slice_span[1]]
                    cur_input_embeds = self.get_model().embed_tokens(cur_input_ids_noim)
                    result_input_embeddings.append(cur_input_embeds)
                    result_output_labels.append(cur_labels_noim)
                elif slice_type == "image":
                    cur_input_embeds = pixel_values[cur_image_idx]
                    result_input_embeddings.append(cur_input_embeds)
                    result_output_labels.append(
                        torch.full(
                            (cur_input_embeds.shape[0],),
                            IGNORE_INDEX,
                            device=cur_labels.device,
                            dtype=cur_labels.dtype,
                        )
                    )
                    cur_image_idx += 1
                elif slice_type == "object":
                    try:
                        result_input_embeddings.append(
                            bbox_feats[cur_object_idx][cur_gt_bnox_indice].unsqueeze(0)
                        )
                    except:
                        raise ValueError(
                            f"current boxe_feats.shape: {bbox_feats[cur_object_idx].shape}, "
                        )
                    cur_gt_bnox_indice += 1
                    result_output_labels.append(
                        torch.full(
                            (1,),
                            IGNORE_INDEX,
                            device=cur_labels.device,
                            dtype=cur_labels.dtype,
                        )
                    )
            cur_object_idx += 1
            result_input_embeddings = torch.cat(result_input_embeddings)
            result_output_labels = torch.cat(result_output_labels)
            assert len(result_output_labels) == len(result_input_embeddings)
            new_input_embeds.append(result_input_embeddings)
            new_labels.append(result_output_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(
            self.config, "tokenizer_model_max_length", None
        )
        if tokenizer_model_max_length is not None:
            new_input_embeds = [
                x[:tokenizer_model_max_length] for x in new_input_embeds
            ]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full(
            (batch_size, max_len),
            IGNORE_INDEX,
            dtype=new_labels[0].dtype,
            device=new_labels[0].device,
        )
        attention_mask = torch.zeros(
            (batch_size, max_len),
            dtype=attention_mask.dtype,
            device=attention_mask.device,
        )
        position_ids = torch.zeros(
            (batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
        )

        for i, (cur_new_embed, cur_new_labels) in enumerate(
            zip(new_input_embeds, new_labels)
        ):
            cur_len = cur_new_embed.shape[0]
            new_input_embeds_padded.append(
                torch.cat(
                    (
                        cur_new_embed,
                        torch.zeros(
                            (max_len - cur_len, cur_new_embed.shape[1]),
                            dtype=cur_new_embed.dtype,
                            device=cur_new_embed.device,
                        ),
                    ),
                    dim=0,
                )
            )
            if cur_len > 0:
                new_labels_padded[i, :cur_len] = cur_new_labels
                attention_mask[i, :cur_len] = True
                position_ids[i, :cur_len] = torch.arange(
                    0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                )

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return (
            None,
            position_ids,
            attention_mask,
            past_key_values,
            new_input_embeds,
            new_labels,
        )

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor],
        pixel_values: Optional[torch.Tensor],
        pixel_values_aux: Optional[torch.Tensor],
        position_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:

        if inputs_embeds is None:
            position_ids = kwargs.pop("position_ids", None)
            attention_mask = kwargs.pop("attention_mask", None)
            gt_boxes = kwargs.pop("gt_boxes", None)
            num_gt_boxes_per_image = kwargs.pop("num_gt_boxes_per_image", None)

            if pixel_values is not None:
                (inputs, position_ids, attention_mask, _, inputs_embeds, _) = (
                    self.prepare_inputs_labels_for_multimodal(
                        inputs,
                        position_ids,
                        attention_mask,
                        past_key_values=None,
                        labels=None,
                        pixel_values=pixel_values,
                        pixel_values_aux=pixel_values_aux,
                        gt_boxes=gt_boxes,
                        num_gt_boxes_per_image=num_gt_boxes_per_image,
                    )
                )

            else:
                inputs_embeds = self.get_model().embed_tokens(inputs)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )


AutoConfig.register("rexseek_qwen", RexSeekQwenConfig)
AutoModelForCausalLM.register(RexSeekQwenConfig, RexSeekQwenForCausalLM)