--- language: - zh - en tags: - translation inference: False --- # Randeng-Deltalm-362M-Zh-En ## 简介 Brief Introduction 使用封神框架,在搜集的中英数据集上,基于 detalm 进行 finetune,得到中 -> 英方向的翻译模型 Using the Fengshen-LM framework, on the collected Chinese-English dataset, finetune based on detalm, and get a translation model in the Chinese->English direction ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | Deltalm | 362M | 翻译任务 Zh-En | ## 模型信息 Model Information 参考论文:[DeltaLM: Encoder-Decoder Pre-training for Language Generation and Translation by Augmenting Pretrained Multilingual Encoders](https://arxiv.org/pdf/2106.13736v2.pdf) ### 下游效果 Performance | datasets | bleu| | ---- | ---- | | florse101-zh-en | 26.47 | ## 使用 Usage ```python from transformers import AutoTokenizer # Need to download modeling_deltalm.py from Fengshenbang-LM github repo in advance, # or you can download modeling_deltalm.py in # Strongly recommend you git clone the Fengshenbang-LM repo: # 1. git clone https://github.com/IDEA-CCNL/Fengshenbang-LM # 2. cd Fengshenbang-LM/fengshen/examples/deltalm/ # and then you will see the modeling_deltalm.py which are needed by deltalm model from modeling_deltalm import DeltalmForConditionalGeneration model = DeltalmForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-Deltalm-362M-Zh-En") tokenizer = AutoTokenizer.from_pretrained("microsoft/infoxlm-base") text = "" inputs = tokenizer(text, max_length=1024, return_tensors="pt") # Generate Summary summary_ids = model.generate(inputs["input_ids"]) tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # model Output: 滑雪女子坡面障碍技巧决赛谷爱凌获银牌 ``` ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```