File size: 2,411 Bytes
a7b9a58
f7ccd76
a7b9a58
 
 
 
f7ccd76
 
a7b9a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model: VietAI/vit5-large
library_name: transformers
license: mit
metrics:
- sacrebleu
tags:
- generated_from_trainer
model-index:
- name: BaViT_Large_Finetune_v0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BaViT_Large_Finetune_v0

This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4909
- Sacrebleu: 11.1985

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
| 0.4969        | 1.0   | 2922  | 0.4594          | 6.2638    |
| 0.4322        | 2.0   | 5844  | 0.4101          | 8.4455    |
| 0.3585        | 3.0   | 8766  | 0.3905          | 9.4839    |
| 0.315         | 4.0   | 11688 | 0.3867          | 10.0488   |
| 0.2831        | 5.0   | 14610 | 0.3877          | 10.4073   |
| 0.2541        | 6.0   | 17532 | 0.3939          | 10.5730   |
| 0.2136        | 7.0   | 20454 | 0.4032          | 10.8551   |
| 0.1985        | 8.0   | 23376 | 0.4167          | 10.8040   |
| 0.1775        | 9.0   | 26298 | 0.4268          | 10.8393   |
| 0.1597        | 10.0  | 29220 | 0.4394          | 10.8971   |
| 0.143         | 11.0  | 32142 | 0.4533          | 10.9369   |
| 0.1396        | 12.0  | 35064 | 0.4673          | 11.0112   |
| 0.1258        | 13.0  | 37986 | 0.4771          | 11.1620   |
| 0.1178        | 14.0  | 40908 | 0.4849          | 11.1513   |
| 0.1109        | 15.0  | 43830 | 0.4909          | 11.1985   |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0