File size: 3,062 Bytes
455e2c2 f9562a1 455e2c2 6fe793f f9562a1 455e2c2 6fe793f 455e2c2 6fe793f 455e2c2 6fe793f 455e2c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
base_model: IAmSkyDra/BARTBana_v5
library_name: transformers
license: mit
metrics:
- sacrebleu
tags:
- generated_from_trainer
model-index:
- name: BARTBana_Translation_v5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BARTBana_Translation_v5
This model is a fine-tuned version of [IAmSkyDra/BARTBana_v5](https://huggingface.co/IAmSkyDra/BARTBana_v5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5493
- Sacrebleu: 8.2109
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
| 0.8112 | 1.0 | 742 | 0.7198 | 1.9252 |
| 0.7466 | 2.0 | 1484 | 0.6679 | 3.0362 |
| 0.6719 | 3.0 | 2226 | 0.6347 | 4.1068 |
| 0.6522 | 4.0 | 2968 | 0.6128 | 4.9362 |
| 0.6111 | 5.0 | 3710 | 0.5966 | 5.4351 |
| 0.5941 | 6.0 | 4452 | 0.5835 | 5.9868 |
| 0.5613 | 7.0 | 5194 | 0.5753 | 6.4039 |
| 0.5428 | 8.0 | 5936 | 0.5684 | 6.6599 |
| 0.5315 | 9.0 | 6678 | 0.5607 | 6.8644 |
| 0.5132 | 10.0 | 7420 | 0.5572 | 7.1633 |
| 0.4958 | 11.0 | 8162 | 0.5534 | 7.2500 |
| 0.4849 | 12.0 | 8904 | 0.5544 | 7.5064 |
| 0.4731 | 13.0 | 9646 | 0.5502 | 7.6249 |
| 0.4624 | 14.0 | 10388 | 0.5508 | 7.5880 |
| 0.4482 | 15.0 | 11130 | 0.5503 | 7.7981 |
| 0.4434 | 16.0 | 11872 | 0.5488 | 7.9009 |
| 0.43 | 17.0 | 12614 | 0.5488 | 7.8955 |
| 0.425 | 18.0 | 13356 | 0.5500 | 8.0053 |
| 0.4177 | 19.0 | 14098 | 0.5460 | 8.1097 |
| 0.4121 | 20.0 | 14840 | 0.5489 | 8.0999 |
| 0.4124 | 21.0 | 15582 | 0.5498 | 8.1294 |
| 0.4046 | 22.0 | 16324 | 0.5492 | 8.2079 |
| 0.4011 | 23.0 | 17066 | 0.5493 | 8.2109 |
| 0.4049 | 24.0 | 17808 | 0.5511 | 8.1965 |
| 0.3964 | 25.0 | 18550 | 0.5513 | 8.1733 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|