File size: 2,423 Bytes
7435fc4
 
949a6e0
 
 
 
 
 
 
 
 
7435fc4
 
949a6e0
 
7435fc4
949a6e0
7435fc4
949a6e0
 
 
 
7435fc4
949a6e0
7435fc4
949a6e0
7435fc4
949a6e0
7435fc4
949a6e0
7435fc4
949a6e0
7435fc4
949a6e0
7435fc4
949a6e0
7435fc4
949a6e0
7435fc4
949a6e0
 
 
 
 
 
 
 
 
7435fc4
949a6e0
7435fc4
949a6e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7435fc4
 
949a6e0
7435fc4
949a6e0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: mit
base_model: IAmSkyDra/BARTBana_v4
tags:
- generated_from_trainer
metrics:
- sacrebleu
model-index:
- name: BARTBana_Translation_v4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BARTBana_Translation_v4

This model is a fine-tuned version of [IAmSkyDra/BARTBana_v4](https://huggingface.co/IAmSkyDra/BARTBana_v4) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4505
- Sacrebleu: 11.7970

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
| 0.6917        | 1.0   | 742   | 0.5995          | 6.7000    |
| 0.6008        | 2.0   | 1484  | 0.5330          | 8.7480    |
| 0.5208        | 3.0   | 2226  | 0.4989          | 9.7564    |
| 0.4962        | 4.0   | 2968  | 0.4808          | 10.3233   |
| 0.46          | 5.0   | 3710  | 0.4711          | 10.7276   |
| 0.4428        | 6.0   | 4452  | 0.4615          | 10.9196   |
| 0.4125        | 7.0   | 5194  | 0.4566          | 11.2077   |
| 0.3955        | 8.0   | 5936  | 0.4515          | 11.3811   |
| 0.3856        | 9.0   | 6678  | 0.4496          | 11.5736   |
| 0.3687        | 10.0  | 7420  | 0.4482          | 11.5727   |
| 0.3553        | 11.0  | 8162  | 0.4496          | 11.6036   |
| 0.3467        | 12.0  | 8904  | 0.4508          | 11.6907   |
| 0.3386        | 13.0  | 9646  | 0.4505          | 11.7970   |
| 0.3324        | 14.0  | 10388 | 0.4510          | 11.7524   |
| 0.3245        | 15.0  | 11130 | 0.4528          | 11.7921   |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0