File size: 2,428 Bytes
876584f 0f26efe 876584f 0f26efe 876584f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: vinai/bartpho-syllable
library_name: transformers
license: mit
metrics:
- sacrebleu
tags:
- generated_from_trainer
model-index:
- name: BARTBana_Translation_v01
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BARTBana_Translation_v01
This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4506
- Sacrebleu: 11.0518
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
| 0.7912 | 1.0 | 742 | 0.6747 | 2.7391 |
| 0.6623 | 2.0 | 1484 | 0.5821 | 5.7331 |
| 0.5662 | 3.0 | 2226 | 0.5306 | 7.8025 |
| 0.5337 | 4.0 | 2968 | 0.5027 | 8.6825 |
| 0.4913 | 5.0 | 3710 | 0.4858 | 9.4253 |
| 0.4711 | 6.0 | 4452 | 0.4725 | 9.8687 |
| 0.4399 | 7.0 | 5194 | 0.4638 | 10.2200 |
| 0.4208 | 8.0 | 5936 | 0.4584 | 10.3954 |
| 0.4096 | 9.0 | 6678 | 0.4533 | 10.7019 |
| 0.3924 | 10.0 | 7420 | 0.4509 | 10.8096 |
| 0.3796 | 11.0 | 8162 | 0.4499 | 10.7237 |
| 0.3704 | 12.0 | 8904 | 0.4502 | 10.9647 |
| 0.3618 | 13.0 | 9646 | 0.4494 | 10.9840 |
| 0.3556 | 14.0 | 10388 | 0.4496 | 11.0433 |
| 0.3476 | 15.0 | 11130 | 0.4506 | 11.0518 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|