File size: 2,104 Bytes
81676aa a19161e 81676aa 856f4bc 81676aa 511d53c 81676aa 043bf2a 81676aa 856f4bc 1dfd462 a19161e 8e840cd 81676aa a86d458 81676aa 856f4bc 81676aa 856f4bc c3b8699 8e840cd c3b8699 81676aa 31b43a7 8a170be c3b8699 297b591 c3b8699 8a170be c3b8699 8a170be c3b8699 8a170be 362d085 8a170be c3b8699 8a170be 31b43a7 ff6fab5 81676aa 8e840cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
library_name: transformers
license: apache-2.0
---
# Model Card for Model ID
Just only a text gen model type, I'm just test train my dataset and...it's work, very nice, try it.
## Model Details
- [](https://colab.research.google.com/drive/1fhVByew053W8SdbacFryIx3luhFkEa1M?usp=sharing)
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub.
- **Developed by:** **HuyRemy**
- **Funded by :** **HuyRemy**
- **Shared by :** **HuyRemy**
- **Model type:** **Megatron Mistral**
- **License:** [email protected]
### Model Demo:
- **Demo :** https://ai.matilda.vn
## Uses
**USE T4 GPU**
```Python
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers trl peft accelerate bitsandbytes
```
### Direct Use
``` Python
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None
load_in_4bit = True
alpaca_prompt = """
### Instruction:
{}
### Input:
{}
### Response:
{}"""
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "huyremy/aichat",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model)
EOS_TOKEN = tokenizer.eos_token
inputs = tokenizer(
[
alpaca_prompt.format(
"who is Nguyễn Phú Trọng?",
"",
"",
),
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
```
## Model Card Contact
[email protected] |