ernestum commited on
Commit
d7de857
·
1 Parent(s): 3f2067e

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/Humanoid-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: seals/Humanoid-v1
16
+ type: seals/Humanoid-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 367.48 +/- 59.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **seals/Humanoid-v1**
25
+ This is a trained model of a **SAC** agent playing **seals/Humanoid-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env seals/Humanoid-v1 -orga HumanCompatibleAI -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env seals/Humanoid-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env seals/Humanoid-v1 -orga HumanCompatibleAI -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env seals/Humanoid-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env seals/Humanoid-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env seals/Humanoid-v1 -f logs/ -orga HumanCompatibleAI
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('buffer_size', 100000),
67
+ ('gamma', 0.98),
68
+ ('learning_rate', 4.426351861707874e-05),
69
+ ('learning_starts', 20000),
70
+ ('n_timesteps', 2000000.0),
71
+ ('policy', 'MlpPolicy'),
72
+ ('policy_kwargs',
73
+ {'log_std_init': -0.1034412732183072,
74
+ 'net_arch': [400, 300],
75
+ 'use_sde': False}),
76
+ ('tau', 0.08),
77
+ ('train_freq', 8),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - hyperparams/python/sac.py
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - seals/Humanoid-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - seals
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 256842314
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - buffer_size
5
+ - 100000
6
+ - - gamma
7
+ - 0.98
8
+ - - learning_rate
9
+ - 4.426351861707874e-05
10
+ - - learning_starts
11
+ - 20000
12
+ - - n_timesteps
13
+ - 2000000.0
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - log_std_init: -0.1034412732183072
18
+ net_arch:
19
+ - 400
20
+ - 300
21
+ use_sde: false
22
+ - - tau
23
+ - 0.08
24
+ - - train_freq
25
+ - 8
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f16fc62f4df2c3b4e46eb0d72ed453b9aa68885aec90a9e9110ad145c7de0b20
3
+ size 491501
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 367.4834745, "std_reward": 59.61112469905793, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:55:49.613190"}
sac-seals-Humanoid-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fd0d336697c54c37f7133c9756ac538e6395ce30fc4f5a6903ee5610a600844
3
+ size 12379155
sac-seals-Humanoid-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.0a3
sac-seals-Humanoid-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d124953f6b25772538fe6ae06151a502540cc2c995a2dcaaee9c44aadb2afc0
3
+ size 2263133
sac-seals-Humanoid-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f23cfcdcf9fb9f931ef890944b860241a3f788fa14eb1fe22c1621d80947596
3
+ size 4472889
sac-seals-Humanoid-v1/data ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function SACPolicy.__init__ at 0x7ff15cf9e700>",
9
+ "_build": "<function SACPolicy._build at 0x7ff15cf9e790>",
10
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7ff15cf9e820>",
11
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7ff15cf9e8b0>",
12
+ "make_actor": "<function SACPolicy.make_actor at 0x7ff15cf9e940>",
13
+ "make_critic": "<function SACPolicy.make_critic at 0x7ff15cf9e9d0>",
14
+ "forward": "<function SACPolicy.forward at 0x7ff15cf9ea60>",
15
+ "_predict": "<function SACPolicy._predict at 0x7ff15cf9eaf0>",
16
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7ff15cf9eb80>",
17
+ "__abstractmethods__": "frozenset()",
18
+ "_abc_impl": "<_abc_data object at 0x7ff15cf96ab0>"
19
+ },
20
+ "verbose": 1,
21
+ "policy_kwargs": {
22
+ "net_arch": [
23
+ 400,
24
+ 300
25
+ ],
26
+ "log_std_init": -0.1034412732183072,
27
+ "use_sde": false
28
+ },
29
+ "num_timesteps": 2000000,
30
+ "_total_timesteps": 2000000,
31
+ "_num_timesteps_at_start": 0,
32
+ "seed": 0,
33
+ "action_noise": null,
34
+ "start_time": 1694771152617696593,
35
+ "learning_rate": {
36
+ ":type:": "<class 'function'>",
37
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwc08us+/c2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
38
+ },
39
+ "tensorboard_log": null,
40
+ "_last_obs": null,
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWVRgwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbQCwAAAAAAAECkb/QPSP4/LKI/kfEH5j/JzYFZM4q0P0/2YwSSota/MD9dj5re4z/A2kd9FxnTP99RKL4rP+Q/JoA/bpMz6b+dzSgGJQX1v+yN+VTat+M/HZjlwGkSsz+uyfDceBvxv2Mwn0ub6f6/xLooL3ddpb9p4fhGtuTKvzAu8z7PyPC/5izYVoUU/7/tcQqdqT2CvwhM3H1/+uo/2ka3Mwpf47+xfEQgUBDsP5n/niOdad6/ZENocWLQ8L/N4WQrAxPsP7Ez8IlFUGA/AINMbyXgQL+YPWzZbstXv2N0L9GM9n2/Egs3r6UIsb+RNRa0v3e7P9xvQmfQ+cQ/9NLC8ZJ5sb+ux8Maa3ixPxpmYsfTgfy/bUJU/BfI2L/yKL08zut7P85fqZm0EQTAOInjJMYBzj+msV4wEgLUPw2K9IHHe84/5YcAFclFvD8l4Yb6Whe6P8URkfaqnra/BgaQwZ1Bm7+00+egRiPBvyqAzdJzjqC/PjD+MoZHcb8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSpiMJE58c/t8+//TPC0T+4uOwmvQ/VPzWdhd3QFrm/YkRwsVePtT8ICZiFZLaTP81hAxY5BfI/XvQjQqnW1j8LRQRFmY3mvwscZ+ie0CFAxbzIZog9rT9ohqfo8g2VPyVw1CMaxKw/gY2FMLUDjb+K3/6Kpy6Bv3Zlj7TjtY2/gYOWn+1Lvb/UsECVFQPUv3tWXkExSL6//QtahHcYAkDQ1C2RKz/QPwkEa0u9lMk/TRdRLuU41T9kEnnWRc+/vzIuWkx3arE/+0tLqUL7tz92pTn5yqXqv8zUFN6mNvG/F8vZUcIc4j+65PaX+3YaQHw2rrr1rbY/EokNoKGl3T/HsnNge0nfPyU0BYBExbM/kgZujT0/tj8Agl/Os/FuP0fKE+fIaPa/EoKGHhQdxj8bWnwSO8bUP3zX1/7KARNAZ8pNduvp1z9R9WjnKAzlP1t1mKmTS/A/20cq3ubv3j+0BUUDGaiov4nLWT+LxKM/ZUQds0pI9b/cbv5EXTrvPyj2KPZslLe/XiGebqoLBkBxzZPi/3/fP8nHJIlX1eM/8usiPhpX8T8p3lYF0yfhPwkir2q15bW/5PhiqiFysz9UjFv/oobwv09snq8BWu0/g2lc6Gy7wr+7ssy+Okb8P+5v5uR3Zcc/cB49Cio9xz8Yu5dw6PnQPxqzYKS47rQ/qkzQaphdob98Z+et8xizP4QhPandZeI/6ZsK1WbS6L/IREsH+b3bP3zX1/7KARNAjAN2Q9/poD+E03/F6GjlP5U/8PH3G+Y/a7Bc3TYovz+ihLMcOZCjP+aZdf+Gk3K/5peM9sgt9T9hnZng09HQv4NkXrTJ/q+/XiGebqoLBkAMYAiymkyXPwaiuwgvyOk/iNqAHvuf6T+WIVPpWPKyP+9RwKNXwrg/QKGMLTWPgr+tZv3MMufyP0n3ycfnVry/kRuFZ0mEwr+7ssy+Okb8PwzFQmzGgJ0/1Dl2LmEfoj8DVSJlnXqhPxjfA22ylVg/Rh9jpDafj7+63AWtKTt7PwrUdVqkDMO/KCxehG5SuD9xm1+AVWvDv352ZiHJk/o/6AoGoG3rgz87tJ0B0OyRP8VXmlnJQpI/s7QBD1ANYr/o0UAu9/19v+nAcnX1y1+/KrSBUPrktb94Fw0+aU+jPxzf2rzimqW/fTtVVjKs8z+qNV/dgn+VPziRvI+3YL8/X8XKr0ZHuz9B7FuTKk6MP5mJ6LLUc5G/xaWqIrVoYz9K3raT8m3aP+UmhfUpTKy/h+vp32fitD9+dmYhyZP6PxLPfZTntpA/4GgFXBvzuT+0OLFL4Cy3P065zVoo14a/8/wosyLPh7/2ZHkfbAxgP+QLgDV72tQ/jhJfK744oz9xMOPFFiatP307VVYyrPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASGjsILqHfT/qk+/PpSLAP6YfaEwzOmE/7lmws5NciD/KMntqzERVv2TPTm01bog/5DXKYbgvrz9dfKjAZKbSPyLNdvdHN6K/5jn9plpDoT/cEHmzR9x7v8f2lwCUVJM/nGoF2F7btj9bGs1+637WP7C/8A+dLJS/amtK0dhloD9Ijmk4L1x2v2Gx5v3yN5E/fn8rT56M5r8mFcK0hIr0v0xl2Cg+l6y/prDPXJDSzD+rKOHz1Om6v4ovx7FuJ9I/vwK1lZGn9D8A+nR+LTO/P4oA5lEQzeA/EBRnrV+Y1T9ECVkIOy/CP1s/d3jfZ+a/vwK1lZGn9D8A+nR+LTO/P4oA5lEQzeA/EBRnrV+Y1T9ECVkIOy/CP1s/d3jfZ+a/bD5s8PSTcj/AI9yUyJfEv5mHOaCoFMY/MNbK2hUjsT+hO9oI18+Ev+KHIV8LJZQ/oBGWMWSad79WzYizyaKrv95ZJSVxdMk/eW6cxWIZrz+UK0i9QliTvws9QJ4y9ao/oBGWMWSad79WzYizyaKrv95ZJSVxdMk/eW6cxWIZrz+UK0i9QliTvws9QJ4y9ao/fq1+i4mIwD9eeoEgy6K1P0E+92qcVqU/5CaDUaqhjz9o7u4tDQODv4zrkAz8R36/dVUM2rjvwj//BDs/SSKyPzj3CbOWZ50/bEkzcov2jT9eLVX2uTaNvxYx4Y+/KGu/2NscPjGKib8+BdVmDeiwP+gQwmXY2r6/cPUqCM8Ehz+sel/B1cmhP1u5APMO9Xa/YmuTl9BQgb/rMD7BNKewP6FtgUW4m76/84a8KRNnhz8RvAMlBSKiP4VixhGyU3e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeAvSQ8AAAACfVJlDwAAAAFewv0BAAAAA5t+jPcAAAABv7XhBwAAAgAz4qF3AAAAAAFHI7T8AAADK/m49QAAAAAoRGzpAAAAAepUYVMAAAACFz1ZTQAAAALKmuBZAAAAAmyGQEsAAAACaq20fQAAAACLnoBRAAAAAvEZZIsAAAAC7rYgTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIuoAamlzCjAhZBRN9YgUMCAdKy6LIv2v1kMdnY9r1hAlHmECIR7LsBwy7EQPCl1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKx7PsFLixA6ew3oATeNECNIA/LkGgwQNUNzBUV8DPASvD+vTu8JMD6hcv0Mk4+QH6Tmmp7BAJA/c5Mt5PV6r97eE6wHTExwMCIQ8ngWzBAB+yXixuaUcA0spu5Ok8WQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGHiJFHZlgvAnd/EWSVNGkDh9c4CbywBQLxI0lP6MSvA2vqE0Gs1LsDqcxWEjms4QGJNCwxw6vo/UKxQ2pNp1T8BApSlUaf1P0D/QraWgzTA9e5fKkD1F0C9o/rlwAQ4QH6Tmmp7BALA/c5Mt5PV6j97eE6wHTExQMCIQ8ngWzDAB+yXixuaUUA0spu5Ok8WwI3p2MerOATAGn+UCOOtB8DGGRwGAz8uwJJpHLCFNkJAiLkYk1v4RMACZJt2g/YAQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAU16AYaUjAFDlHSUUpQu"
48
+ },
49
+ "_episode_num": 2000,
50
+ "use_sde": false,
51
+ "sde_sample_freq": -1,
52
+ "_current_progress_remaining": 0.0,
53
+ "_stats_window_size": 100,
54
+ "ep_info_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHtCjA8B+4OMAWyUTegDjAF0lEdAtD9E1FYuCnV9lChoBkdAfaPvexfOU2gHTegDaAhHQLRCm2alUId1fZQoaAZHQHxvWys0YTFoB03oA2gIR0C0RbAOFxn4dX2UKGgGR0CEwTZ26kIpaAdN6ANoCEdAtEjgQvpQlHV9lChoBkdAhQjCBwuM/GgHTegDaAhHQLRMC4YaYNR1fZQoaAZHQIJUDpqynk1oB03oA2gIR0C0Tzs2vStvdX2UKGgGR0BuRYVbiZOSaAdN6ANoCEdAtFJ72RJVbXV9lChoBkdAbmLWtlqagGgHTegDaAhHQLRV07DVH4J1fZQoaAZHQGQLSSvC/GloB03oA2gIR0C0WRrkwN9ZdX2UKGgGR0Bg0SrDIikgaAdN6ANoCEdAtFxw93bEgnV9lChoBkdAXpOZ+hGpdmgHTegDaAhHQLRf37RfF751fZQoaAZHQHyHiwW3z+ZoB03oA2gIR0C0Y0P7rLQpdX2UKGgGR0CAK/mq5sj3aAdN6ANoCEdAtGaN5B1LanV9lChoBkdAgblTVc2R72gHTegDaAhHQLRp2peu3c51fZQoaAZHQHNvD9fkWARoB03oA2gIR0C0bUV1B+nZdX2UKGgGR0B0TWCuloDgaAdN6ANoCEdAtHCKarmyPnV9lChoBkdAdkVR3u/lAGgHTegDaAhHQLRz2oSL61t1fZQoaAZHQHDeC2hIvrZoB03oA2gIR0C0dyb876pHdX2UKGgGR0Bdcoht+CsfaAdN6ANoCEdAtHqSFXaJynV9lChoBkdAWpkrTYukDmgHTegDaAhHQLR93mSQo1F1fZQoaAZHQHizPMW43FVoB03oA2gIR0C0gPShakhzdX2UKGgGR0Bxb7a7EpAlaAdN6ANoCEdAtIQwqiGnGnV9lChoBkdAcba4Kx9oe2gHTegDaAhHQLSHdvCMxXZ1fZQoaAZHQHhv98VpKz1oB03oA2gIR0C0ipx59mYjdX2UKGgGR0B5FjLowEhaaAdN6ANoCEdAtI3OYE4ecXV9lChoBkdAZBaLux8lX2gHTegDaAhHQLSRSrLyMDR1fZQoaAZHQHtKkj5bhWJoB03oA2gIR0C0lJ7sOXmedX2UKGgGR0B8vOGqPwNLaAdN6ANoCEdAtJfvsolUqHV9lChoBkdAdXcwlByCF2gHTegDaAhHQLSbMysjmjl1fZQoaAZHQHBv00Jng51oB03oA2gIR0C0nkNHDrJKdX2UKGgGR0B6QiWLP2PDaAdN6ANoCEdAtKFzpSrHVHV9lChoBkdAgoL8yN4qw2gHTegDaAhHQLSkzNZ/0/Z1fZQoaAZHQHC+a3qiXY1oB03oA2gIR0C0p9tEG7jDdX2UKGgGR0BzwvMB6rvLaAdN6ANoCEdAtKsMxrSE13V9lChoBkdAfpvQHAymAWgHTegDaAhHQLSuLV1Oj7B1fZQoaAZHQHaooOYplSVoB03oA2gIR0C0sWjV2A5JdX2UKGgGR0ByP12ovSMMaAdN6ANoCEdAtLTKMAFPi3V9lChoBkdAeFKaZx7zCmgHTegDaAhHQLS3/Sn+AEt1fZQoaAZHQHpiOZXuE25oB03oA2gIR0C0uyWrsByTdX2UKGgGR0B4LjozN2TxaAdN6ANoCEdAtL5H6/IsAnV9lChoBkdAdXH5uqFRHmgHTegDaAhHQLTBWzkp7Tl1fZQoaAZHQHR/w4jrzGxoB03oA2gIR0C0xHc6BAfMdX2UKGgGR0B8BJ65Xlr/aAdN6ANoCEdAtMe/7+DODHV9lChoBkdAcinNB4Uvf2gHTegDaAhHQLTK82JSBLB1fZQoaAZHQHeoe8f3evZoB03oA2gIR0C0zgfeDWbxdX2UKGgGR0ByovcEeQuFaAdN6ANoCEdAtNEXhuO0cHV9lChoBkdAc+9d7v5P/WgHTegDaAhHQLTUEjvd/KB1fZQoaAZHQHChjTBqKxdoB03oA2gIR0C01yGNm16WdX2UKGgGR0BzJAI3R5TqaAdN6ANoCEdAtNo7FirksHV9lChoBkdAdBHgx8D0UWgHTegDaAhHQLTdMOQhfSh1fZQoaAZHQHCNw/LTx5NoB03oA2gIR0C04FSMHbAUdX2UKGgGR0BxfUWDYh+waAdN6ANoCEdAtONeISDh+HV9lChoBkdAcpTB7u2JBWgHTegDaAhHQLTmhvDgqEx1fZQoaAZHQHFd0KeCkGloB03oA2gIR0C06Y9v863idX2UKGgGR0ByHyfywwCbaAdN6ANoCEdAtOyuiudPL3V9lChoBkdAcGpru6VdHGgHTegDaAhHQLTvsX18LKF1fZQoaAZHQHMMEh3aBZpoB03oA2gIR0C08rHVG0/odX2UKGgGR0By7Qg3cYZVaAdN6ANoCEdAtPWdLbpNbnV9lChoBkdAeJjGUOd5IGgHTegDaAhHQLT4eJvHcUN1fZQoaAZHQHBKgFgUlAxoB03oA2gIR0C0+0cX7+DOdX2UKGgGR0B4EanDR+jNaAdN6ANoCEdAtP42sr/bTXV9lChoBkdAd/Zs9B8hLWgHTegDaAhHQLUBENN8E3d1fZQoaAZHQGx7yNOuaF5oB03oA2gIR0C1BAyntOVPdX2UKGgGR0B0FeElE7W/aAdN6ANoCEdAtQb2iO/+KnV9lChoBkdAdMcZpi7TUmgHTegDaAhHQLUJxK0D2al1fZQoaAZHQHtjZyyUs4FoB03oA2gIR0C1DJAnDziCdX2UKGgGR0B1x21stTUBaAdN6ANoCEdAtQ9LKDCgsnV9lChoBkdAd+1eZ5Rj0GgHTegDaAhHQLUSKgKF7D51fZQoaAZHQHZngrlNlAhoB03oA2gIR0C1FPyeVcD9dX2UKGgGR0BzaA6r/82raAdN6ANoCEdAtRfieumrKnV9lChoBkdAdpZkhRqGlGgHTegDaAhHQLUa2sxfv4N1fZQoaAZHQHe5HLidat9oB03oA2gIR0C1HdYTXarWdX2UKGgGR0Bz/HsD4gzQaAdN6ANoCEdAtSDBmVZ9u3V9lChoBkdAdvsRLsa86GgHTegDaAhHQLUj29XtBv91fZQoaAZHQHWY0Aksz2xoB03oA2gIR0C1JsUCzTnadX2UKGgGR0B4xMaNuLrHaAdN6ANoCEdAtSnb/XGwR3V9lChoBkdAeE7njyWiUWgHTegDaAhHQLUsvWVNYbN1fZQoaAZHQHNG4acZtN1oB03oA2gIR0C1L8xNdqtYdX2UKGgGR0ByCITnJT2naAdN6ANoCEdAtTLY6r/823V9lChoBkdAccb6i0v4/WgHTegDaAhHQLU14Wp6yB11fZQoaAZHQHQuQtBfKIVoB03oA2gIR0C1OOmtITXbdX2UKGgGR0Bxe1XaJyhjaAdN6ANoCEdAtTvwBU70WnV9lChoBkdAc0tJCjUNKGgHTegDaAhHQLU+8n1nM+x1fZQoaAZHQHPhLnX/YJ5oB03oA2gIR0C1QeOKTB69dX2UKGgGR0Bu3Dgflp49aAdN6ANoCEdAtUUEiiZfD3V9lChoBkdAc1KCdSVGC2gHTegDaAhHQLVH/c+7lJZ1fZQoaAZHQHSa5iVjZthoB03oA2gIR0C1Sy6J2t+1dX2UKGgGR0Bzsc8dPtUoaAdN6ANoCEdAtU4vNB4UvnV9lChoBkdAc8tfoA4n4WgHTegDaAhHQLVRUtL+PzZ1fZQoaAZHQHM1w5zYEntoB03oA2gIR0C1VHMR6F/QdX2UKGgGR0Bz4ANYr8R+aAdN6ANoCEdAtVedX5nDi3V9lChoBkdAdt5MURFqjGgHTegDaAhHQLVayI/Z/Td1fZQoaAZHQHMNzKHO8kFoB03oA2gIR0C1XfH1jAi3dX2UKGgGR0B2aTk6tDD1aAdN6ANoCEdAtWFGVyFPBXV9lChoBkdAdncXv6TGHmgHTegDaAhHQLVkg72L5yl1fZQoaAZHQHMZW38XN1RoB03oA2gIR0C1Z6zz3AVPdX2UKGgGR0B4C6bYsd1daAdN6ANoCEdAtWr+anaWX3V9lChoBkdAeHhOymhufmgHTegDaAhHQLVuO7nPmgd1fZQoaAZHQHjzL8WKuSxoB03oA2gIR0C1cUO9OARTdX2UKGgGR0Bx5S6Ae7tiaAdN6ANoCEdAtXRiHymQ83VlLg=="
57
+ },
58
+ "ep_success_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
+ },
62
+ "_n_updates": 247500,
63
+ "observation_space": {
64
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
65
+ ":serialized:": "gAWVEhwAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJNegGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJZ6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFE16AYWUaBh0lFKUjAZfc2hhcGWUTXoBhZSMA2xvd5RoECiW0AsAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApNegGFlGgYdJRSlIwEaGlnaJRoECiW0AsAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApNegGFlGgYdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu",
66
+ "dtype": "float64",
67
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
68
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
69
+ "_shape": [
70
+ 378
71
+ ],
72
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
73
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
74
+ "low_repr": "-inf",
75
+ "high_repr": "inf",
76
+ "_np_random": null
77
+ },
78
+ "action_space": {
79
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
80
+ ":serialized:": "gAWV5gIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWEQAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAZRoFEsRhZRoGHSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBAolkQAAAAAAAAAzczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL6UaApLEYWUaBh0lFKUjARoaWdolGgQKJZEAAAAAAAAAM3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+lGgKSxGFlGgYdJRSlIwIbG93X3JlcHKUjAQtMC40lIwJaGlnaF9yZXBylIwDMC40lIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDGMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaDyKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
81
+ "dtype": "float32",
82
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
83
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
84
+ "_shape": [
85
+ 17
86
+ ],
87
+ "low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]",
88
+ "high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]",
89
+ "low_repr": "-0.4",
90
+ "high_repr": "0.4",
91
+ "_np_random": "Generator(PCG64)"
92
+ },
93
+ "n_envs": 1,
94
+ "buffer_size": 1,
95
+ "batch_size": 64,
96
+ "learning_starts": 20000,
97
+ "tau": 0.08,
98
+ "gamma": 0.98,
99
+ "gradient_steps": 1,
100
+ "optimize_memory_usage": false,
101
+ "replay_buffer_class": {
102
+ ":type:": "<class 'abc.ABCMeta'>",
103
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
+ "__module__": "stable_baselines3.common.buffers",
105
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
106
+ "__init__": "<function ReplayBuffer.__init__ at 0x7ff15cfec700>",
107
+ "add": "<function ReplayBuffer.add at 0x7ff15cfec790>",
108
+ "sample": "<function ReplayBuffer.sample at 0x7ff15cfec820>",
109
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7ff15cfec8b0>",
110
+ "_maybe_cast_dtype": "<staticmethod object at 0x7ff15cfe57c0>",
111
+ "__abstractmethods__": "frozenset()",
112
+ "_abc_impl": "<_abc_data object at 0x7ff15cfe57e0>"
113
+ },
114
+ "replay_buffer_kwargs": {},
115
+ "train_freq": {
116
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
117
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
118
+ },
119
+ "use_sde_at_warmup": false,
120
+ "target_entropy": -17.0,
121
+ "ent_coef": "auto",
122
+ "target_update_interval": 1,
123
+ "lr_schedule": {
124
+ ":type:": "<class 'function'>",
125
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwc08us+/c2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
126
+ },
127
+ "batch_norm_stats": [],
128
+ "batch_norm_stats_target": []
129
+ }
sac-seals-Humanoid-v1/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:275c1e31ba17a7016c207a183ec6d17c91ffa4ee96667231396bd56f6c8c1ce7
3
+ size 1507
sac-seals-Humanoid-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd697ff54f5cee72489eaa83ea123e1fca0772250fe251bf1b9658c5304c6d0
3
+ size 5602821
sac-seals-Humanoid-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dabd14ba1d69cca5d578ff95bc399b0ebbf31a5471b6471b5c2bf1d3b0f36e52
3
+ size 747
sac-seals-Humanoid-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc83703bd5eb53aba76bd7a079c25215141c36de58f9b1697f1bbf9d1fd5d33
3
+ size 58659