ernestum commited on
Commit
c2ac3ea
·
1 Parent(s): 7aad829

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 2575.48 +/- 173.56
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -37,15 +37,21 @@ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
- python -m utils.load_from_hub --algo sac --env seals/Hopper-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo sac --env seals/Hopper-v0 -f logs/
42
  ```
43
 
 
 
 
 
 
 
44
  ## Training (with the RL Zoo)
45
  ```
46
  python train.py --algo sac --env seals/Hopper-v0 -f logs/
47
  # Upload the model and generate video (when possible)
48
- python -m utils.push_to_hub --algo sac --env seals/Hopper-v0 -f logs/ -orga HumanCompatibleAI
49
  ```
50
 
51
  ## Hyperparameters
@@ -58,7 +64,9 @@ OrderedDict([('batch_size', 128),
58
  ('n_timesteps', 1000000.0),
59
  ('policy', 'MlpPolicy'),
60
  ('policy_kwargs',
61
- 'dict(net_arch=[256, 256], log_std_init=-1.6829391077276037)'),
 
 
62
  ('tau', 0.08),
63
  ('train_freq', 32),
64
  ('normalize', False)])
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 1350.71 +/- 25.77
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
+ python -m rl_zoo3.load_from_hub --algo sac --env seals/Hopper-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo sac --env seals/Hopper-v0 -f logs/
42
  ```
43
 
44
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
45
+ ```
46
+ python -m rl_zoo3.load_from_hub --algo sac --env seals/Hopper-v0 -orga HumanCompatibleAI -f logs/
47
+ rl_zoo3 enjoy --algo sac --env seals/Hopper-v0 -f logs/
48
+ ```
49
+
50
  ## Training (with the RL Zoo)
51
  ```
52
  python train.py --algo sac --env seals/Hopper-v0 -f logs/
53
  # Upload the model and generate video (when possible)
54
+ python -m rl_zoo3.push_to_hub --algo sac --env seals/Hopper-v0 -f logs/ -orga HumanCompatibleAI
55
  ```
56
 
57
  ## Hyperparameters
 
64
  ('n_timesteps', 1000000.0),
65
  ('policy', 'MlpPolicy'),
66
  ('policy_kwargs',
67
+ {'log_std_init': -1.6829391077276037,
68
+ 'net_arch': [256, 256],
69
+ 'use_sde': False}),
70
  ('tau', 0.08),
71
  ('train_freq', 32),
72
  ('normalize', False)])
args.yml CHANGED
@@ -1,6 +1,8 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - sac
 
 
4
  - - device
5
  - cpu
6
  - - env
@@ -16,7 +18,7 @@
16
  - - hyperparams
17
  - null
18
  - - log_folder
19
- - seals_experts_wandb_oldpickle/seed_9/
20
  - - log_interval
21
  - -1
22
  - - max_total_trials
@@ -41,6 +43,8 @@
41
  - null
42
  - - optimize_hyperparameters
43
  - false
 
 
44
  - - pruner
45
  - median
46
  - - sampler
@@ -50,13 +54,13 @@
50
  - - save_replay_buffer
51
  - false
52
  - - seed
53
- - 9
54
  - - storage
55
  - null
56
  - - study_name
57
  - null
58
  - - tensorboard_log
59
- - runs/seals/Hopper-v0__sac__9__1658846826
60
  - - track
61
  - true
62
  - - trained_agent
@@ -70,6 +74,8 @@
70
  - - verbose
71
  - 1
72
  - - wandb_entity
73
- - null
74
  - - wandb_project_name
75
- - seals-experts-oldpickle
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - sac
4
+ - - conf_file
5
+ - hyperparams/python/sac.py
6
  - - device
7
  - cpu
8
  - - env
 
18
  - - hyperparams
19
  - null
20
  - - log_folder
21
+ - logs
22
  - - log_interval
23
  - -1
24
  - - max_total_trials
 
43
  - null
44
  - - optimize_hyperparameters
45
  - false
46
+ - - progress
47
+ - false
48
  - - pruner
49
  - median
50
  - - sampler
 
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
+ - 5
58
  - - storage
59
  - null
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
+ - runs/seals/Hopper-v0__sac__5__1672325329
64
  - - track
65
  - true
66
  - - trained_agent
 
74
  - - verbose
75
  - 1
76
  - - wandb_entity
77
+ - ernestum
78
  - - wandb_project_name
79
+ - seals-experts-normalized
80
+ - - yaml_file
81
+ - null
config.yml CHANGED
@@ -14,7 +14,11 @@
14
  - - policy
15
  - MlpPolicy
16
  - - policy_kwargs
17
- - dict(net_arch=[256, 256], log_std_init=-1.6829391077276037)
 
 
 
 
18
  - - tau
19
  - 0.08
20
  - - train_freq
 
14
  - - policy
15
  - MlpPolicy
16
  - - policy_kwargs
17
+ - log_std_init: -1.6829391077276037
18
+ net_arch:
19
+ - 256
20
+ - 256
21
+ use_sde: false
22
  - - tau
23
  - 0.08
24
  - - train_freq
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:66163d8265993c6bf0a9113cc119aac06b3c6219fd98fd8dd8361ac8f706291c
3
- size 1618352
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0320c2e609181e02cf1b3abcead357e24a8fc9f5b35673f1affdcc6c0aec8010
3
+ size 1555874
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 2575.4775179000003, "std_reward": 173.55675379625745, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T17:08:34.032151"}
 
1
+ {"mean_reward": 1350.7082415, "std_reward": 25.772142362091774, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-31T18:49:05.850426"}
sac-seals-Hopper-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:661c86229f3fc3a2a8e845e385459119c0f39b5f01c1aeab3483fa3d9055c9b6
3
- size 3141993
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7abbba9be28b4af60b0711e5c3ae3864405922a2f5335685d891df3afa4ec0b3
3
+ size 3142136
sac-seals-Hopper-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.0
 
1
+ 1.6.2
sac-seals-Hopper-v0/actor.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:156f64b0f29323597d99f522c38addc244a1dc9543b1f4c26e310c4078ed31fd
3
  size 571549
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16fb60e9bba299acb66c1356552b3e2a02558264f971dcb594f31b4535e704a6
3
  size 571549
sac-seals-Hopper-v0/critic.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4122376262604ba2c27998eba1edbe8292e90e23bc43d6829f2bcc71d0e728ba
3
  size 1131513
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1650bf0b2b6b18fb6da49b5bae10ae504ca74e467c83d7beb4fc4d2ed00f198
3
  size 1131513
sac-seals-Hopper-v0/data CHANGED
@@ -4,17 +4,17 @@
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
- "__init__": "<function SACPolicy.__init__ at 0x7f2eeb6270d0>",
8
- "_build": "<function SACPolicy._build at 0x7f2eeb627160>",
9
- "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f2eeb6271f0>",
10
- "reset_noise": "<function SACPolicy.reset_noise at 0x7f2eeb627280>",
11
- "make_actor": "<function SACPolicy.make_actor at 0x7f2eeb627310>",
12
- "make_critic": "<function SACPolicy.make_critic at 0x7f2eeb6273a0>",
13
- "forward": "<function SACPolicy.forward at 0x7f2eeb627430>",
14
- "_predict": "<function SACPolicy._predict at 0x7f2eeb6274c0>",
15
- "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f2eeb627550>",
16
  "__abstractmethods__": "frozenset()",
17
- "_abc_impl": "<_abc_data object at 0x7f2eeb61f900>"
18
  },
19
  "verbose": 1,
20
  "policy_kwargs": {
@@ -40,7 +40,7 @@
40
  },
41
  "action_space": {
42
  ":type:": "<class 'gym.spaces.box.Box'>",
43
- ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
44
  "dtype": "float32",
45
  "_shape": [
46
  3
@@ -55,17 +55,17 @@
55
  "num_timesteps": 1000000,
56
  "_total_timesteps": 1000000,
57
  "_num_timesteps_at_start": 0,
58
- "seed": 0,
59
  "action_noise": null,
60
- "start_time": 1658846830.1354108,
61
  "learning_rate": {
62
  ":type:": "<class 'function'>",
63
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1wDdAZveNiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
64
  },
65
- "tensorboard_log": "runs/seals/Hopper-v0__sac__9__1658846826/seals-Hopper-v0",
66
  "lr_schedule": {
67
  ":type:": "<class 'function'>",
68
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1wDdAZveNiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
69
  },
70
  "_last_obs": null,
71
  "_last_episode_starts": {
@@ -74,7 +74,7 @@
74
  },
75
  "_last_original_obs": {
76
  ":type:": "<class 'numpy.ndarray'>",
77
- ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAGZQFDBpIzJAJbceQdLhvj/TOzH2OLv5P2ZW3IvuEsK/tCz6S8OCk78QMFUaVMbOvwkJIyC3KghAZFY67mTA7D8+xMXbVsIUwKJW55wxHxXAsMyhI/E+nj8qoCIwRS0ewJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="
78
  },
79
  "_episode_num": 1000,
80
  "use_sde": false,
@@ -82,7 +82,7 @@
82
  "_current_progress_remaining": 0.0,
83
  "ep_info_buffer": {
84
  ":type:": "<class 'collections.deque'>",
85
- ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB5rPuctznkCUhpRSlIwBbJRN6AOMAXSUR0Cb+fz1K5CodX2UKGgGaAloD0MIv30dOKcdoUCUhpRSlGgVTegDaBZHQJwCQLy+YdB1fZQoaAZoCWgPQwiF0axs50uiQJSGlFKUaBVN6ANoFkdAnAmQA+6iCnV9lChoBmgJaA9DCJhMFYwSs6BAlIaUUpRoFU3oA2gWR0CcET3MY/FBdX2UKGgGaAloD0MIyjUFMjNUoUCUhpRSlGgVTegDaBZHQJwZR8Ti84B1fZQoaAZoCWgPQwgqWONsYvygQJSGlFKUaBVN6ANoFkdAnCGLYwqRU3V9lChoBmgJaA9DCHb6QV1kOp9AlIaUUpRoFU3oA2gWR0CcKVt8eCCjdX2UKGgGaAloD0MIhhvw+cmToECUhpRSlGgVTegDaBZHQJww94MWoFV1fZQoaAZoCWgPQwgt6L0xZKWfQJSGlFKUaBVN6ANoFkdAnDm4gA6uGXV9lChoBmgJaA9DCH/d6c5TCZ9AlIaUUpRoFU3oA2gWR0CcQgj0th/idX2UKGgGaAloD0MIRaD6B6EJn0CUhpRSlGgVTegDaBZHQJxKBGe+VTt1fZQoaAZoCWgPQwhgyVUsXkSeQJSGlFKUaBVN6ANoFkdAnFG8xsVLz3V9lChoBmgJaA9DCDATRUhtM6FAlIaUUpRoFU3oA2gWR0CcWcUutfXxdX2UKGgGaAloD0MIOKClK/AWoUCUhpRSlGgVTegDaBZHQJxh2bWmP5p1fZQoaAZoCWgPQwiVSQ1tgJygQJSGlFKUaBVN6ANoFkdAnGoK9f1Hv3V9lChoBmgJaA9DCP+xEB363aFAlIaUUpRoFU3oA2gWR0Cccb0kWykcdX2UKGgGaAloD0MI+gyoN6sEo0CUhpRSlGgVTegDaBZHQJx5zBsQ/X51fZQoaAZoCWgPQwiISiNmHrmhQJSGlFKUaBVN6ANoFkdAnIHMB2fTTnV9lChoBmgJaA9DCO888Zw1t6BAlIaUUpRoFU3oA2gWR0CcihsE7nxKdX2UKGgGaAloD0MIHyxjQy+woUCUhpRSlGgVTegDaBZHQJyRsLy+YdB1fZQoaAZoCWgPQwjyDBr6j5CiQJSGlFKUaBVN6ANoFkdAnJnH7Hhjv3V9lChoBmgJaA9DCIdT5uaThaFAlIaUUpRoFU3oA2gWR0Ccoie0ojOcdX2UKGgGaAloD0MIj/8CQSCAoUCUhpRSlGgVTegDaBZHQJyqon9ehPF1fZQoaAZoCWgPQwjkht9NZ9OhQJSGlFKUaBVN6ANoFkdAnLKExqO94HV9lChoBmgJaA9DCFuwVBeoGqJAlIaUUpRoFU3oA2gWR0CcuwoqCpWFdX2UKGgGaAloD0MIEOm3r8PHoECUhpRSlGgVTegDaBZHQJzZJbt7a7F1fZQoaAZoCWgPQwibVgqBhEKkQJSGlFKUaBVN6ANoFkdAnOEjND+irXV9lChoBmgJaA9DCIS9iSGpnKBAlIaUUpRoFU3oA2gWR0Cc6TLXL/0edX2UKGgGaAloD0MIsp3vp26DoUCUhpRSlGgVTegDaBZHQJzxfR9gF5h1fZQoaAZoCWgPQwiNJ4I4z6ChQJSGlFKUaBVN6ANoFkdAnPjJnHvMKXV9lChoBmgJaA9DCJOOcjDjvKFAlIaUUpRoFU3oA2gWR0CdAI2GZeAvdX2UKGgGaAloD0MI/DVZox7eokCUhpRSlGgVTegDaBZHQJ0Ijp6hQFd1fZQoaAZoCWgPQwiFsvD1JWWiQJSGlFKUaBVN6ANoFkdAnRCAmu1WsHV9lChoBmgJaA9DCB7cnbUj/aFAlIaUUpRoFU3oA2gWR0CdF/4keIVNdX2UKGgGaAloD0MIBI4EGkT8oECUhpRSlGgVTegDaBZHQJ0ffrRjSXt1fZQoaAZoCWgPQwjejQWFecOgQJSGlFKUaBVN6ANoFkdAnSdJQpF1CHV9lChoBmgJaA9DCBcplIWviJ5AlIaUUpRoFU3oA2gWR0CdLvRbr1M/dX2UKGgGaAloD0MIIos08Z5lokCUhpRSlGgVTegDaBZHQJ02Dze40/J1fZQoaAZoCWgPQwgAjdKlX/WhQJSGlFKUaBVN6ANoFkdAnT0z+rELpnV9lChoBmgJaA9DCGH6XkPw5qFAlIaUUpRoFU3oA2gWR0CdRQAvtdAxdX2UKGgGaAloD0MI1hwgmLuAoUCUhpRSlGgVTegDaBZHQJ1NJ5zHS4R1fZQoaAZoCWgPQwi7gJcZlq2hQJSGlFKUaBVN6ANoFkdAnVUa0+kgwHV9lChoBmgJaA9DCCmUha9X2KJAlIaUUpRoFU3oA2gWR0CdXE/SH/LldX2UKGgGaAloD0MIZ/D3i+k4oUCUhpRSlGgVTegDaBZHQJ1jvlmvnr91fZQoaAZoCWgPQwgKhnMNazCiQJSGlFKUaBVN6ANoFkdAnWwaGtZFHHV9lChoBmgJaA9DCDS+Ly59TKJAlIaUUpRoFU3oA2gWR0CddB4nndO7dX2UKGgGaAloD0MI+PvFbDn5okCUhpRSlGgVTegDaBZHQJ17z5xiobZ1fZQoaAZoCWgPQwjxZg3ev4yiQJSGlFKUaBVN6ANoFkdAnYLR60IC2nV9lChoBmgJaA9DCBl1rb1XvqBAlIaUUpRoFU3oA2gWR0CdilkbgjyGdX2UKGgGaAloD0MI5ngFoo8sokCUhpRSlGgVTegDaBZHQJ2SQqCpWFN1fZQoaAZoCWgPQwgpzlFH93+hQJSGlFKUaBVN6ANoFkdAna0lo6CDmXV9lChoBmgJaA9DCEusjEaue6FAlIaUUpRoFU3oA2gWR0CdtBufEn9fdX2UKGgGaAloD0MIONibGCKdo0CUhpRSlGgVTegDaBZHQJ27WpvP1L91fZQoaAZoCWgPQwgX2c73u42kQJSGlFKUaBVN6ANoFkdAncLYS+QEIXV9lChoBmgJaA9DCFlN1xPN9KFAlIaUUpRoFU3oA2gWR0CdygfEXLvDdX2UKGgGaAloD0MIshAdAgdsoUCUhpRSlGgVTegDaBZHQJ3RsJUo8ZF1fZQoaAZoCWgPQwgC85Apt6+hQJSGlFKUaBVN6ANoFkdAndkQPy08eXV9lChoBmgJaA9DCBK9jGIRf6FAlIaUUpRoFU3oA2gWR0Cd4TLgGbCrdX2UKGgGaAloD0MIC0Pk9P1ToUCUhpRSlGgVTegDaBZHQJ3ptrk8zRB1fZQoaAZoCWgPQwiYaftXjvKhQJSGlFKUaBVN6ANoFkdAnfH8YMvysnV9lChoBmgJaA9DCGywcJL+OqNAlIaUUpRoFU3oA2gWR0Cd+eE384xUdX2UKGgGaAloD0MI3bWEfJD+oUCUhpRSlGgVTegDaBZHQJ4BFr1uivh1fZQoaAZoCWgPQwgvNUI/IzCkQJSGlFKUaBVN6ANoFkdAnghjX4CZGHV9lChoBmgJaA9DCJCGU+YmB6BAlIaUUpRoFU3oA2gWR0CeD6k+HJtBdX2UKGgGaAloD0MIhnXj3WmgoECUhpRSlGgVTegDaBZHQJ4XCZy+6Ah1fZQoaAZoCWgPQwhqMA3DZ3GiQJSGlFKUaBVN6ANoFkdAnh6Bz7uUlnV9lChoBmgJaA9DCG+BBMW3eKJAlIaUUpRoFU3oA2gWR0CeJlsImgJ1dX2UKGgGaAloD0MIy2d5HoTmoUCUhpRSlGgVTegDaBZHQJ4uTGACnxd1fZQoaAZoCWgPQwgy6ITQeRKiQJSGlFKUaBVN6ANoFkdAnjYOP3i71HV9lChoBmgJaA9DCElnYOS1laJAlIaUUpRoFU3oA2gWR0CePgiZfD1odX2UKGgGaAloD0MIVkYjn1dBoUCUhpRSlGgVTegDaBZHQJ5F4/bCaZx1fZQoaAZoCWgPQwiBBTBl4IOjQJSGlFKUaBVN6ANoFkdAnk3MibDuSnV9lChoBmgJaA9DCNNnB1xPJqRAlIaUUpRoFU3oA2gWR0CeVdfF72L6dX2UKGgGaAloD0MIUWaDTFqcoUCUhpRSlGgVTegDaBZHQJ5eNHSWqtJ1fZQoaAZoCWgPQwjmPGNfYk6hQJSGlFKUaBVN6ANoFkdAnmW7oOhCdHV9lChoBmgJaA9DCHaLwFi3BqRAlIaUUpRoFU3oA2gWR0CehSLIxQBQdX2UKGgGaAloD0MI+yKhLachoUCUhpRSlGgVTegDaBZHQJ6M+1+iJwd1fZQoaAZoCWgPQwgF3zR9PpigQJSGlFKUaBVN6ANoFkdAnpUXQUpNK3V9lChoBmgJaA9DCMX+sntyU6JAlIaUUpRoFU3oA2gWR0CenezQeFL4dX2UKGgGaAloD0MI1LmilACZoUCUhpRSlGgVTegDaBZHQJ6mV2V3Ux51fZQoaAZoCWgPQwixh/axkjyhQJSGlFKUaBVN6ANoFkdAnq4TgZTAFnV9lChoBmgJaA9DCDGale1buKBAlIaUUpRoFU3oA2gWR0CetheEIw/QdX2UKGgGaAloD0MI7X2qCvUyoUCUhpRSlGgVTegDaBZHQJ6+cAMlTm51fZQoaAZoCWgPQwhs6dFU79WgQJSGlFKUaBVN6ANoFkdAnscCgbp/w3V9lChoBmgJaA9DCH4dOGfMPKFAlIaUUpRoFU3oA2gWR0CezoSlnAZbdX2UKGgGaAloD0MIF7t9Vhlko0CUhpRSlGgVTegDaBZHQJ7WdmZmZmZ1fZQoaAZoCWgPQwjg2LPnUrefQJSGlFKUaBVN6ANoFkdAnt5dgSeyzHV9lChoBmgJaA9DCG4T7pWBn6FAlIaUUpRoFU3oA2gWR0Ce5ic7hegMdX2UKGgGaAloD0MIKsb5m9huoUCUhpRSlGgVTegDaBZHQJ7t+wMYuTR1fZQoaAZoCWgPQwgsYW2MxTCjQJSGlFKUaBVN6ANoFkdAnvXjvRZ2ZHV9lChoBmgJaA9DCK2KcJM506NAlIaUUpRoFU3oA2gWR0Ce/kuuRs/IdX2UKGgGaAloD0MIduPdkQkao0CUhpRSlGgVTegDaBZHQJ8GlHrhR651fZQoaAZoCWgPQwiTGW8rBeahQJSGlFKUaBVN6ANoFkdAnw6kQK8cuXV9lChoBmgJaA9DCF/RrdektaFAlIaUUpRoFU3oA2gWR0CfFkI/Z/TcdX2UKGgGaAloD0MIFHtoH7vuoECUhpRSlGgVTegDaBZHQJ8eD/aQFLZ1fZQoaAZoCWgPQwjKxRhYtzKjQJSGlFKUaBVN6ANoFkdAnyZbuYx+KHV9lChoBmgJaA9DCDtvY7MTSKNAlIaUUpRoFU3oA2gWR0CfLpy08eS0dX2UKGgGaAloD0MIVOQQcRvipECUhpRSlGgVTegDaBZHQJ82B12aDwp1fZQoaAZoCWgPQwg9LNSabtGiQJSGlFKUaBVN6ANoFkdAnz3XdCVrynV9lChoBmgJaA9DCEllijkwvaJAlIaUUpRoFU3oA2gWR0CfRZvCMxXXdWUu"
86
  },
87
  "ep_success_buffer": {
88
  ":type:": "<class 'collections.deque'>",
@@ -100,13 +100,13 @@
100
  ":type:": "<class 'abc.ABCMeta'>",
101
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
  "__module__": "stable_baselines3.common.buffers",
103
- "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
- "__init__": "<function ReplayBuffer.__init__ at 0x7f2eeb675280>",
105
- "add": "<function ReplayBuffer.add at 0x7f2eeb675310>",
106
- "sample": "<function ReplayBuffer.sample at 0x7f2eeb6753a0>",
107
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7f2eeb675430>",
108
  "__abstractmethods__": "frozenset()",
109
- "_abc_impl": "<_abc_data object at 0x7f2eeb6f9480>"
110
  },
111
  "replay_buffer_kwargs": {},
112
  "train_freq": {
@@ -116,5 +116,7 @@
116
  "use_sde_at_warmup": false,
117
  "target_entropy": -3.0,
118
  "ent_coef": "auto",
119
- "target_update_interval": 1
 
 
120
  }
 
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7f2ac127cee0>",
8
+ "_build": "<function SACPolicy._build at 0x7f2ac127cf70>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f2ac1205040>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f2ac12050d0>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7f2ac1205160>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7f2ac12051f0>",
13
+ "forward": "<function SACPolicy.forward at 0x7f2ac1205280>",
14
+ "_predict": "<function SACPolicy._predict at 0x7f2ac1205310>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f2ac12053a0>",
16
  "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f2ac127bcf0>"
18
  },
19
  "verbose": 1,
20
  "policy_kwargs": {
 
40
  },
41
  "action_space": {
42
  ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACA6tN/xWH5wD0oAa1E8OERvEjDYHkfreNmqh4QKt4HW7JZN7H00QJoY2idx8vw52ILeV09wf7H9uSOspEY6SeEKg4LS00Ddxk7dv8QQctbl0qMB+rcHr+TWXcQcbAq35aY5P7OxpdMQRlbjJbbbfnmF1Hv43cL/nHbV1u4nUUjWFla8ouYUvfnLoE63QquxZMPaU4t5xfsVlVZEJitFjDnZAN8CmzaBN8BvxmdUYf/qFE1vlkhpFk4XZTv9UHpfbhwllQFJtkqXTULW1VsByAmZ1OFo5fpJCy0Mv5/U4jfrLFCNLFHmgtwHd+lkxeGKSScibI5vWrl0U161lQhpLgLZZEVQpVKoguvbBXMaTPYJlfu0BFSgoN/2yWossX+9AS1tclZqSU8SC47dMOBZUX3Q8zUe9EET2+7+DPHL2zzsqoKPTri33+Xrh2qtYokX18RehQ9kkLHQ8j2IZV8nshrU82myYzGkmBOUk/N7PSTjxXdhoAm6NKcvKcCjYF+LM1/zf1pwLtF1rZQH/S9J5btwynyaP+DfnBmdI/OKzBgzv5yFq9Rjc+S/g7AAllaFPZYKcLyxdGv6x+4tcVXsnQ4rmf2/DXa/9HtNjmUQ/mmCad+ooEatARFaJK6Vdkjr4xNhvV+HlUlDTD9B4c69tbif8dT6Xp3QYNzsHVgrNcKFtXJM3gg/4ymO97ZtAY908wcKiQn9fcXX+jz53zqaSYdrJwKjNqOMYgEm8vBaMIG8hrYKhY/6TF+6z8UAkv+4o9/SsPMmoemXYAefM8jf/QNc9GfWnFOhJ8j5/0Vs77smpx7ELrcj8Y2ERAUu3FZ9b3YtQFQGhwzgcwCH0yY6Ig04ersEOmGJp00Ejl+V5kNeG7rc/nMk9QBTFVqqBQ7TQjgUTjZyqVNPhEkiaLyhdw1bpw5wl24C9vUK6xIxXMDLA2PEu/XWZ/mrklBUGohRNOHmXjPJFxaVT1h0X7LTkP0bEZHOeOx334toT6fR0rx8oP28gFglY7LohEaM2ERFHYGsA9BVF2/Yc58iou71Vh6MOOkaj+aRx9roaYYmjASvXleLXdYaDNmUUato4bLxkS8oC89wu9SBBViVrowjYAIMAhLs6brp7IjIBqiyNiIPvT2roNPimRpFGt1q+9zwWmWcB2k83KGDYoAybWNVtx9gSD+qOtM5YefZU9hnC81EUXymxeOU3PqNew1uN/Xjrl9jOrbQ7rU/A5MHHEIsCfY88LaRr2Z7GZZioCgemcv66XEBQRxyRqGkJicgCt8pQkOBZICaNOBvLNMSRylajx9R/EMpho+5Csx1c05XIOEV661JWxrPAcgtAzriNDWA+Vp+bk1heFvFhO30GtFqhDpxbGsBbDbp9mx5PksBDYUeYLRzER8V4mIHqjO5ziQLmYeQa4Qg0D4GcEF62dTBrD1n420bx9C+/OwmIPa1eEOwc2EFQh5JX+cVA5IgNeLcyX36mrWhuUEMYFZHz/zzRr27dmFCUZcsr0bP8D1pvLNJsZ09G2rYmFaq6UXqiCHa8Q6/MaqHrQwo18aluCLh/6avB9bPlN7F1v90xwCLHkFFla3Paakp+NwZfTz5zLDLCMrKX9Mu6Ke3QUR8ZlckvxKV7Hw+z2OntpCfVfDh0160gQAAHBS5qhEBsuyVQ3P8TVuBzFIrgsEFg/k2DoL3LEhz/nfhybKHB9BNJwvnlE/AtmkoEdBkFKSfsFjWzdINaN/HlNI5ZdKRhYrMRqj9WLJ36WJj26RF8dTTkVzlYJcRMPqiHz02VD2v/YIclDfISll5JtNDQHAcde4vGF4tkVdm/6SSmd1Ca58AzO/vUTRm0ewnwgAmBe528CpHpQyinIehsj6ab2uRk5bn6yCtoRzMYURXxLhyr6aYgr40LZ9srkuU9aTxdd0pzmXkvY/DVoxsmBM8cZjgG3HNhKlrYOVbOXtJsHGmPdnBdJTGfMXfjwRRPO04FVEDkFVmhlj5eZLZiG2Hc6GTDp0RD2rtrrMKZUfCViSoNvlEBNhmKL+wkaVWJyc2L/traE6bMd13hB007gsQ100pwpVkAzveKf8vEWiC1KRCRFpsouPP6w2/FdW5aKAPxUQQWuBm6uLojNxPcMLigD+mxJ2UtR4dJQ8u6Mg0H++Pazi2Dad/+2hB+x4IrohYhcC8Iyp3c1zt2Gddp5U+xR1tSZH1q1XDd7nuaC6eSsvtdCeShv13GLmR/AaeHlTWN+gzholHKKOYR4MdvCFBPOpIO/vWoqAlX9qf3K3k+Z5PPzE1E5IZbWNb9OEF5owiMBdIU9X12IrESH47szKCX5U7i/3SyDAkW11hFZtw5Ez7aKdzveU8K24QUa5GlAFnuq/abt790qkVfTmk5xD5XmHrjeV1fXK2ydiCcHcfHHSlYYWCpyNKVAcT0XVrx5l4/21HWs1KuboY+07aLtGO8LWFhTe90oKRh4dUAMUqmVlahO++B0/m/wkTFZYMTxE7/FxL3CICtMzxq45kzD56h4/F7jVFZEEotD5oh4m2nZWQAVvYgRJ5ZygY/yKGqa1/WFjRSuX75cnQcSUNgMJAOtYb7Xk/9x25mv+NMk3MsE/nfEW5++J60cHLBrpR/4DLoaznQNyeBxpnhbZ+2DKiLhqW1ennLder6LxlRZIRZbZtpknrP5D3emYhfUMIfuA3MJowL73IQOYxodNGBH4bQZsqZWsIVPCJVIKb3ydqK3ktqjdi2w6y9o4lMFFu/0yQH3L0wBC1C3Dp8u9AGnHx3Obq/WHKtrFqxu0+JAKD4ulBujifw99/VSZCadmz8qOpqcyYeys/z4t7aowfJ8E+diddt1UEW+mY3PSyanIXtptsiEja3umEClp3Ev+lYsthI/PfbZpkHHlwWQiuzZ0fH6vZbbC8ImoNQTraXNbppwag86MJKFttkOFerkl2iSyVScEYKmC+pAt988ddz0TbCIkJUXNhHjZPNXhw4xvXZ/jjLO61U2/WeV6vj75Jdf7yPl5/GOQJAja6p68DLmmVJn1BURa05iwhL3jc+9WeW/0ZJs6pQRoDtuwZMeGogotgxsusha14t4WXbYJupB7fxIKSKO2dS+TQMnKDgangIRiYZTAPeTMifmChFb4E0aG+wuJzbMhHzLAFvfW4218KXyFkiqCB9w+kj9I/CS941KoazHt/9FE+MG1tTJtXiyLwPEcIbQeaAnTG4CHMwNTUJS0ILtX2siBj/oI/WZffZz9IOEpt0E/55ZCB82x8SrLzu19Q6dL7Wp0FfVASHqw/FMBOgcbZ/0KpMIIlaQ2z6Ca0o8Bd6eiw5nRJ/KSpXhE0m2MFDJ9RzSUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
44
  "dtype": "float32",
45
  "_shape": [
46
  3
 
55
  "num_timesteps": 1000000,
56
  "_total_timesteps": 1000000,
57
  "_num_timesteps_at_start": 0,
58
+ "seed": 9,
59
  "action_noise": null,
60
+ "start_time": 1672325346434471552,
61
  "learning_rate": {
62
  ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1wDdAZveNiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
64
  },
65
+ "tensorboard_log": "runs/seals/Hopper-v0__sac__5__1672325329/seals-Hopper-v0",
66
  "lr_schedule": {
67
  ":type:": "<class 'function'>",
68
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1wDdAZveNiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
69
  },
70
  "_last_obs": null,
71
  "_last_episode_starts": {
 
74
  },
75
  "_last_original_obs": {
76
  ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAMtLi4FMGyJAUcEg4nVLzz/ijz8elPz3P/Binrx3/ci//ydGT5dLdT8+AvYhNSPcP6w7tYxOwOQ/FgX0jtB09r+Ei6hbdNXeP7HxFxdT1+o/5NAfO2emv79IyymI4AAEwJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="
78
  },
79
  "_episode_num": 1000,
80
  "use_sde": false,
 
82
  "_current_progress_remaining": 0.0,
83
  "ep_info_buffer": {
84
  ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAknYt4PJlECUhpRSlIwBbJRN6AOMAXSUR0Cf6gCu2Zy/dX2UKGgGaAloD0MIv56vWW4AlUCUhpRSlGgVTegDaBZHQJ/wcVFhG6R1fZQoaAZoCWgPQwhrm+JxgS+UQJSGlFKUaBVN6ANoFkdAn/a0L2HtW3V9lChoBmgJaA9DCKbwoNm1xZRAlIaUUpRoFU3oA2gWR0Cf/MvZh8YydX2UKGgGaAloD0MI9Q8iGZISlECUhpRSlGgVTegDaBZHQKABhga3qiZ1fZQoaAZoCWgPQwitNCkFDUCVQJSGlFKUaBVN6ANoFkdAoAST7j1f3XV9lChoBmgJaA9DCHnou1vJYpVAlIaUUpRoFU3oA2gWR0CgB6MMRYigdX2UKGgGaAloD0MI1e3sK3+xlUCUhpRSlGgVTegDaBZHQKAK2Q5FPSF1fZQoaAZoCWgPQwixaaUQmFWUQJSGlFKUaBVN6ANoFkdAoA4O8K5TZXV9lChoBmgJaA9DCIoFvqLLfZJAlIaUUpRoFU3oA2gWR0CgEQstTUAldX2UKGgGaAloD0MICmr4FqYvk0CUhpRSlGgVTegDaBZHQKAUHaxoqTd1fZQoaAZoCWgPQwjTakjcszWVQJSGlFKUaBVN6ANoFkdAoBcyFZgXuXV9lChoBmgJaA9DCMFwrmFGIJVAlIaUUpRoFU3oA2gWR0CgGk08mrsCdX2UKGgGaAloD0MIN/3Zj8RIk0CUhpRSlGgVTegDaBZHQKAdfMRHww11fZQoaAZoCWgPQwjexmZHyp6TQJSGlFKUaBVN6ANoFkdAoCCR+OOsDHV9lChoBmgJaA9DCFSPNLj99JJAlIaUUpRoFU3oA2gWR0CgI630wrUcdX2UKGgGaAloD0MIrYcvEyXmlUCUhpRSlGgVTegDaBZHQKAm1LaEi+t1fZQoaAZoCWgPQwjyIhPwaz2UQJSGlFKUaBVN6ANoFkdAoCnQlhPTHHV9lChoBmgJaA9DCNB7YwigRJVAlIaUUpRoFU3oA2gWR0CgLOxiobXIdX2UKGgGaAloD0MIdVYL7AGtlECUhpRSlGgVTegDaBZHQKAwAIBzV+Z1fZQoaAZoCWgPQwg6deWzDIeUQJSGlFKUaBVN6ANoFkdAoDNe0/nnuHV9lChoBmgJaA9DCIANiBCXkZNAlIaUUpRoFU3oA2gWR0CgNoh+fAbidX2UKGgGaAloD0MIRwINNpW8lECUhpRSlGgVTegDaBZHQKA5lobn5i51fZQoaAZoCWgPQwjbhlEQXGSVQJSGlFKUaBVN6ANoFkdAoDzSfzz3AXV9lChoBmgJaA9DCGrecYpe7JRAlIaUUpRoFU3oA2gWR0CgP/HxjJ+2dX2UKGgGaAloD0MI0V0SZ0Wuk0CUhpRSlGgVTegDaBZHQKBMQ7r9l3B1fZQoaAZoCWgPQwgdr0D01FqUQJSGlFKUaBVN6ANoFkdAoE9dW6shgXV9lChoBmgJaA9DCNPaNLZHdJVAlIaUUpRoFU3oA2gWR0CgUn8m8dxRdX2UKGgGaAloD0MID4Ejgfa0k0CUhpRSlGgVTegDaBZHQKBVwmCyyD91fZQoaAZoCWgPQwhNFYxK6rCTQJSGlFKUaBVN6ANoFkdAoFjwUlAu7HV9lChoBmgJaA9DCCvCTUZlnJJAlIaUUpRoFU3oA2gWR0CgXBCosI3SdX2UKGgGaAloD0MIY2GInN7Tk0CUhpRSlGgVTegDaBZHQKBfHU/fO2R1fZQoaAZoCWgPQwgpdck4JpGUQJSGlFKUaBVN6ANoFkdAoGJCf4AS4HV9lChoBmgJaA9DCE7RkVx+BJNAlIaUUpRoFU3oA2gWR0CgZWNxMnJDdX2UKGgGaAloD0MI+3YSEZ4VlECUhpRSlGgVTegDaBZHQKBocKWLP2R1fZQoaAZoCWgPQwjekEYFjtGTQJSGlFKUaBVN6ANoFkdAoGuCa9bosHV9lChoBmgJaA9DCE+y1eW075NAlIaUUpRoFU3oA2gWR0Cgbq8M3IdVdX2UKGgGaAloD0MIZjIczxeulUCUhpRSlGgVTegDaBZHQKBxzj81n/V1fZQoaAZoCWgPQwiVK7zLJYOVQJSGlFKUaBVN6ANoFkdAoHT7XOGCZnV9lChoBmgJaA9DCGq8dJM4pJRAlIaUUpRoFU3oA2gWR0CgeBoXTEzgdX2UKGgGaAloD0MIzTrj+1LXlECUhpRSlGgVTegDaBZHQKB7NSLIgeR1fZQoaAZoCWgPQwivCWmNEVmSQJSGlFKUaBVN6ANoFkdAoH5HTiKiwnV9lChoBmgJaA9DCGixFMkn+ZRAlIaUUpRoFU3oA2gWR0CggWcNYr8SdX2UKGgGaAloD0MIs7ES88x3lECUhpRSlGgVTegDaBZHQKCEfo3aSLZ1fZQoaAZoCWgPQwiPqiaIitySQJSGlFKUaBVN6ANoFkdAoIecL0BfbHV9lChoBmgJaA9DCBR2UfSAB5NAlIaUUpRoFU3oA2gWR0CgiqTSThYOdX2UKGgGaAloD0MIZeJWQcwZkUCUhpRSlGgVTegDaBZHQKCNozu4PPN1fZQoaAZoCWgPQwgCYhIuVPGRQJSGlFKUaBVN6ANoFkdAoJC0EvCdjHV9lChoBmgJaA9DCHvbTIVIapNAlIaUUpRoFU3oA2gWR0Cgk846fapQdX2UKGgGaAloD0MIh2wgXZy6lUCUhpRSlGgVTegDaBZHQKCW0jPfKp11fZQoaAZoCWgPQwgH8BZIUEmVQJSGlFKUaBVN6ANoFkdAoKLUDQqqfnV9lChoBmgJaA9DCM3K9iHfNpZAlIaUUpRoFU3oA2gWR0CgpeSWRigCdX2UKGgGaAloD0MIrimQ2enRlECUhpRSlGgVTegDaBZHQKCpBYU34sV1fZQoaAZoCWgPQwg1e6AV+KCUQJSGlFKUaBVN6ANoFkdAoKwkFnqVyHV9lChoBmgJaA9DCLYsX5cB5pNAlIaUUpRoFU3oA2gWR0CgrxdLxqfwdX2UKGgGaAloD0MItLCnHc7HlUCUhpRSlGgVTegDaBZHQKCyNMlkYoB1fZQoaAZoCWgPQwgstklF8yaUQJSGlFKUaBVN6ANoFkdAoLVhPhybQXV9lChoBmgJaA9DCNm0UgiU8ZVAlIaUUpRoFU3oA2gWR0CguHHW8RL9dX2UKGgGaAloD0MIK702G7ullUCUhpRSlGgVTegDaBZHQKC7dd+ocaR1fZQoaAZoCWgPQwiVRPZB1puVQJSGlFKUaBVN6ANoFkdAoL5vp6hQFnV9lChoBmgJaA9DCJmfG5pSzJVAlIaUUpRoFU3oA2gWR0CgwZ7utwJgdX2UKGgGaAloD0MICp5CrtQfl0CUhpRSlGgVTegDaBZHQKDEvTBInSh1fZQoaAZoCWgPQwhWgVoMbi6VQJSGlFKUaBVN6ANoFkdAoMfJJGvwE3V9lChoBmgJaA9DCG4T7pXpspRAlIaUUpRoFU3oA2gWR0CgytsN2C/XdX2UKGgGaAloD0MI3X2Oj4bIk0CUhpRSlGgVTegDaBZHQKDN63pfQa91fZQoaAZoCWgPQwhzvALRQwaTQJSGlFKUaBVN6ANoFkdAoND1w71ZknV9lChoBmgJaA9DCDoDIy+L0pNAlIaUUpRoFU3oA2gWR0Cg0/RZU1htdX2UKGgGaAloD0MIPl5IhzcxlUCUhpRSlGgVTegDaBZHQKDXBd+ocaR1fZQoaAZoCWgPQwjisDTwwxuWQJSGlFKUaBVN6ANoFkdAoNo5oIv8InV9lChoBmgJaA9DCPT8aaNKI5VAlIaUUpRoFU3oA2gWR0Cg3WGALApKdX2UKGgGaAloD0MIYW2MnWAelECUhpRSlGgVTegDaBZHQKDgiEHt4Rp1fZQoaAZoCWgPQwguVz82WZOVQJSGlFKUaBVN6ANoFkdAoON+7nPmgnV9lChoBmgJaA9DCEOOrWfY2ZNAlIaUUpRoFU3oA2gWR0Cg5npTVDrrdX2UKGgGaAloD0MIcvp6vjZblECUhpRSlGgVTegDaBZHQKDpjbPhQ3x1fZQoaAZoCWgPQwhpi2t8FmSUQJSGlFKUaBVN6ANoFkdAoOyicZtNz3V9lChoBmgJaA9DCHVz8bf9lZRAlIaUUpRoFU3oA2gWR0Cg+LnlwLmZdX2UKGgGaAloD0MIu4CXGeYilUCUhpRSlGgVTegDaBZHQKD7zwQ176Z1fZQoaAZoCWgPQwgsZoS3V0SUQJSGlFKUaBVN6ANoFkdAoP7W1SflIXV9lChoBmgJaA9DCLtCHyzTBpZAlIaUUpRoFU3oA2gWR0ChAfcm0E5idX2UKGgGaAloD0MIFLAdjAhElUCUhpRSlGgVTegDaBZHQKEFHL6DXe51fZQoaAZoCWgPQwhgHccPBSaVQJSGlFKUaBVN6ANoFkdAoQgn7JnxrnV9lChoBmgJaA9DCCaMZmVrs5VAlIaUUpRoFU3oA2gWR0ChC0U+TvAodX2UKGgGaAloD0MIE7u2t1vQlUCUhpRSlGgVTegDaBZHQKEOZtBv73x1fZQoaAZoCWgPQwifHtsyYACVQJSGlFKUaBVN6ANoFkdAoRGJS9/SY3V9lChoBmgJaA9DCIif/x78J5ZAlIaUUpRoFU3oA2gWR0ChFLerdWQwdX2UKGgGaAloD0MIPdf34aDOlkCUhpRSlGgVTegDaBZHQKEX5fek56t1fZQoaAZoCWgPQwi0AG2rSeiVQJSGlFKUaBVN6ANoFkdAoRrvgpBomHV9lChoBmgJaA9DCIEhq1sNl5RAlIaUUpRoFU3oA2gWR0ChHhSQ5myxdX2UKGgGaAloD0MI98snKwZelUCUhpRSlGgVTegDaBZHQKEhQIBzV+Z1fZQoaAZoCWgPQwi3m+Cb9uWTQJSGlFKUaBVN6ANoFkdAoSRaL876pHV9lChoBmgJaA9DCNnQzf7Q+JRAlIaUUpRoFU3oA2gWR0ChJ1HPeHi4dX2UKGgGaAloD0MIABx79vxAlUCUhpRSlGgVTegDaBZHQKEqfQ79ycV1fZQoaAZoCWgPQwgzqDY4URqVQJSGlFKUaBVN6ANoFkdAoS2ZrJr+HnV9lChoBmgJaA9DCAvPS8X2PZZAlIaUUpRoFU3oA2gWR0ChMJi8FpwkdX2UKGgGaAloD0MIILjKExjQlUCUhpRSlGgVTegDaBZHQKEzquK4x1x1fZQoaAZoCWgPQwjHn6hsGLmVQJSGlFKUaBVN6ANoFkdAoTa8VHnU2HV9lChoBmgJaA9DCFPnUfGfq5VAlIaUUpRoFU3oA2gWR0ChOdmJWNm2dX2UKGgGaAloD0MImxw+6XRIlUCUhpRSlGgVTegDaBZHQKE81tpEhJR1fZQoaAZoCWgPQwhYq3ZNCO2VQJSGlFKUaBVN6ANoFkdAoT/8Xxe9jHV9lChoBmgJaA9DCJFkVu8QDZRAlIaUUpRoFU3oA2gWR0ChQxnl4keIdWUu"
86
  },
87
  "ep_success_buffer": {
88
  ":type:": "<class 'collections.deque'>",
 
100
  ":type:": "<class 'abc.ABCMeta'>",
101
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
  "__module__": "stable_baselines3.common.buffers",
103
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f2ac12510d0>",
105
+ "add": "<function ReplayBuffer.add at 0x7f2ac1251160>",
106
+ "sample": "<function ReplayBuffer.sample at 0x7f2ac12511f0>",
107
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f2ac1251280>",
108
  "__abstractmethods__": "frozenset()",
109
+ "_abc_impl": "<_abc_data object at 0x7f2ac12d3330>"
110
  },
111
  "replay_buffer_kwargs": {},
112
  "train_freq": {
 
116
  "use_sde_at_warmup": false,
117
  "target_entropy": -3.0,
118
  "ent_coef": "auto",
119
+ "target_update_interval": 1,
120
+ "batch_norm_stats": [],
121
+ "batch_norm_stats_target": []
122
  }
sac-seals-Hopper-v0/ent_coef_optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f48e55dede4acbeb2915f62573714bdb546b242fc24c35d8538326c2c47f6239
3
- size 1443
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c298c1751d5d7f1c30d98d3d71aeb9c0a7eedf164564411b6d4ba75871193a45
3
+ size 1507
sac-seals-Hopper-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccd2ecaf1c6a849d1c90e4d3b1f7aa6eb8049ab005402a5c8f20e14cdfd7cbe8
3
  size 1415493
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30b3709d693e14f07beb0b6bf2da988e9dffdd4662a80fdf6bf57b53204ad261
3
  size 1415493
sac-seals-Hopper-v0/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:13128e55795707e8815425ba293f6027f66d1543c5518ac1ebe6b660a62750eb
3
  size 747
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d55cd4d044669e9a0a071dd18d5c2e286f0b00ab494bce2727a7f97e7cc402aa
3
  size 747
sac-seals-Hopper-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
- OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
2
  Python: 3.8.10
3
- Stable-Baselines3: 1.6.0
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
 
1
+ OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
2
  Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:683473fa51b476095adf0f0d0215333e004d9a92017df0d71f8fcde806d56cbc
3
- size 33513
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88b097cfbcba3985668e1ecaeed3012c518f71a3b9a4e006324f2e3029219a10
3
+ size 33677