File size: 10,055 Bytes
64fa2ae 40fcca6 2444fad 64fa2ae 2444fad 64fa2ae 2444fad 64fa2ae 2444fad 64fa2ae 420dbd3 40fcca6 1b1e134 40fcca6 cf18ce2 40fcca6 64fa2ae 40fcca6 420dbd3 40fcca6 2444fad 40fcca6 2444fad 420dbd3 2444fad 420dbd3 40fcca6 2444fad 40fcca6 2444fad 40fcca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import pandas as pd
from typing import List
from rdkit import Chem
from rdkit.Chem import AllChem
from transformers import PretrainedConfig
from transformers import PreTrainedModel
from transformers import AutoModel
from torch_geometric.nn import GCNConv
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_scatter import scatter
class SmilesDataset(torch.utils.data.Dataset):
def __init__(self, smiles):
self.smiles_list = smiles
self.data_list = []
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
return self.data_list[idx]
def get_data(self, smiles):
self.smiles_list = smiles
# self.data_list = []
# bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'S': 4}
for i in range(len(self.smiles_list)):
# 将 SMILES 表示转换为 RDKit 的分子对象
# print(self.smiles_list[i])
mol = Chem.MolFromSmiles(self.smiles_list[i]) # 从smiles编码中获取结构信息
if mol is None:
print("无法创建Mol对象", self.smiles_list[i])
else:
mol3d = Chem.AddHs(
mol) # 在rdkit中,分子在默认情况下是不显示氢的,但氢原子对于真实的几何构象计算有很大的影响,所以在计算3D构象前,需要使用Chem.AddHs()方法加上氢原子
if mol3d is None:
print("无法创建mol3d对象", self.smiles_list[i])
else:
AllChem.EmbedMolecule(mol3d, randomSeed=1) # 生成3D构象
N = mol3d.GetNumAtoms()
# 获取原子坐标信息
if mol3d.GetNumConformers() > 0:
conformer = mol3d.GetConformer()
pos = conformer.GetPositions()
pos = torch.tensor(pos, dtype=torch.float)
type_idx = []
# atomic_number = []
# aromatic = []
# sp = []
# sp2 = []
# sp3 = []
for atom in mol3d.GetAtoms():
type_idx.append(types[atom.GetSymbol()])
# atomic_number.append(atom.GetAtomicNum())
# aromatic.append(1 if atom.GetIsAromatic() else 0)
# hybridization = atom.GetHybridization()
# sp.append(1 if hybridization == HybridizationType.SP else 0)
# sp2.append(1 if hybridization == HybridizationType.SP2 else 0)
# sp3.append(1 if hybridization == HybridizationType.SP3 else 0)
# z = torch.tensor(atomic_number, dtype=torch.long)
row, col, edge_type = [], [], []
for bond in mol3d.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
# edge_type += 2 * [bonds[bond.GetBondType()]]
edge_index = torch.tensor([row, col], dtype=torch.long)
# edge_type = torch.tensor(edge_type, dtype=torch.long)
# edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)
perm = (edge_index[0] * N + edge_index[1]).argsort()
edge_index = edge_index[:, perm]
# edge_type = edge_type[perm]
# edge_attr = edge_attr[perm]
#
# row, col = edge_index
# hs = (z == 1).to(torch.float)
x = torch.tensor(type_idx).to(torch.float)
# y = self.y_list[i]
data = Data(x=x, pos=pos, edge_index=edge_index, smiles=self.smiles_list[i])
self.data_list.append(data)
else:
print("无法创建comfor", self.smiles_list[i])
return self.data_list
"""
MLP Layer used after graph vector representation
"""
class MLPReadout(nn.Module):
def __init__(self, input_dim, output_dim, L=2): # L=nb_hidden_layers
super().__init__()
list_FC_layers = [nn.Linear(input_dim // 2 ** l, input_dim // 2 ** (l + 1), bias=True) for l in range(L)]
list_FC_layers.append(nn.Linear(input_dim // 2 ** L, output_dim, bias=True))
self.FC_layers = nn.ModuleList(list_FC_layers)
self.L = L
def forward(self, x):
y = x
for l in range(self.L):
y = self.FC_layers[l](y)
y = F.relu(y)
y = self.FC_layers[self.L](y)
return y
class GCNNet(torch.nn.Module):
def __init__(self, input_feature=64, emb_input=20, hidden_size=64, n_layers=6, num_classes=1):
super(GCNNet, self).__init__()
self.embedding = torch.nn.Embedding(emb_input, hidden_size, padding_idx=0)
self.input_feature = input_feature
self.n_layers = n_layers # 2层GCN
self.num_classes = num_classes
self.conv1 = GCNConv(hidden_size, hidden_size)
self.conv2 = GCNConv(hidden_size, 32)
self.mlp = MLPReadout(32, num_classes)
def forward_features(self, data):
x, edge_index, batch = data.x.long(), data.edge_index, data.batch
x = self.embedding(x.reshape(-1))
for i in range(self.n_layers):
x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv2(x, edge_index))
x = scatter(x, batch, dim=-2, reduce='mean')
x = self.mlp(x)
return x.squeeze(-1)
class GCNConfig(PretrainedConfig):
model_type = "gcn"
def __init__(
self,
input_feature: int=64,
emb_input: int=20,
hidden_size: int=64,
n_layers: int=6,
num_classes: int=1,
smiles: List[str] = None,
processor_class: str = "SmilesProcessor",
**kwargs,
):
self.input_feature = input_feature # the dimension of input feature
self.emb_input = emb_input # the embedding dimension of input feature
self.hidden_size = hidden_size # the hidden size of GCN
self.n_layers = n_layers # the number of GCN layers
self.num_classes = num_classes # the number of output classes
self.smiles = smiles # process smiles
self.processor_class = processor_class
super().__init__(**kwargs)
class GCNModel(PreTrainedModel):
config_class = GCNConfig
def __init__(self, config):
super().__init__(config)
self.model = GCNNet(
input_feature=config.input_feature,
emb_input=config.emb_input,
hidden_size=config.hidden_size,
n_layers=config.n_layers,
num_classes=config.num_classes,
)
self.process = SmilesDataset(
smiles=config.smiles,
)
self.gcn_model = None
self.dataset = None
self.output = None
self.data_loader = None
self.pred_data = None
def forward(self, tensor):
return self.model.forward_features(tensor)
# def process_smiles(self, smiles):
# return self.process.get_data(smiles)
def predict_smiles(self, smiles, device: str='cpu', result_dir: str='./', **kwargs):
batch_size = kwargs.pop('batch_size', 1)
shuffle = kwargs.pop('shuffle', False)
drop_last = kwargs.pop('drop_last', False)
num_workers = kwargs.pop('num_workers', 0)
self.gcn_model = AutoModel.from_pretrained("Huhujingjing/custom-gcn", trust_remote_code=True).to(device)
self.gcn_model.eval()
self.dataset = self.process.get_data(smiles)
self.output = ""
self.output += ("predicted samples num: {}\n".format(len(self.dataset)))
self.output +=("predicted samples:{}\n".format(self.dataset[0]))
self.data_loader = DataLoader(self.dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last,
num_workers=num_workers
)
self.pred_data = {
'smiles': [],
'pred': []
}
for batch in tqdm(self.data_loader):
batch = batch.to(device)
with torch.no_grad():
self.pred_data['smiles'] += batch['smiles']
self.pred_data['pred'] += self.gcn_model(batch).cpu().tolist()
pred = torch.tensor(self.pred_data['pred']).reshape(-1)
if device == 'cuda':
pred = pred.cpu().tolist()
self.pred_data['pred'] = pred
pred_df = pd.DataFrame(self.pred_data)
pred_df['pred'] = pred_df['pred'].apply(lambda x: round(x, 2))
self.output +=('-' * 40 + '\n'+'predicted result: \n'+'{}\n'.format(pred_df))
self.output +=('-' * 40)
pred_df.to_csv(os.path.join(result_dir, 'gcn.csv'), index=False)
self.output +=('\nsave predicted result to {}\n'.format(os.path.join(result_dir, 'gcn.csv')))
return self.output
if __name__ == "__main__":
gcn_config = GCNConfig(input_feature=64, emb_input=20, hidden_size=64, n_layers=6, num_classes=1,
smiles=["C", "CC", "CCC"], processor_class="SmilesProcessor")
gcnd = GCNModel(gcn_config)
gcnd.model.load_state_dict(torch.load(r'G:\Trans_MXM\gcn_model\gcn.pt'))
gcnd.save_pretrained("custom-gcn")
|