Update README.md
Browse files
README.md
CHANGED
@@ -12,20 +12,28 @@ Code link: https://github.com/hnuzhy/MultiAugs
|
|
12 |
**COCO1K / COCO5K / COCO10K**
|
13 |
|
14 |
*trained on `partly labeled (1k, 5k or 10k) COCO train-set` and `left unlabeled COCO train-set`*
|
15 |
-
* **ResNet-18 (256x192, COCO1K, 30 epochs)
|
16 |
-
* **ResNet-18 (256x192, COCO5K, 70 epochs)
|
17 |
-
* **ResNet-18 (256x192, COCO10K, 100 epochs)
|
|
|
|
|
|
|
|
|
18 |
|
19 |
**COCOall + COCOunlabel**
|
20 |
|
21 |
*trained on `labeled COCO train-set` and `unlabeled COCO unlabeled-set`*
|
22 |
-
* **ResNet-50 (256x192, 400 epochs)
|
23 |
-
* **ResNet-101 (256x192, 400 epochs)
|
24 |
-
* **HRNet-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
**MPII + AIC**
|
27 |
|
28 |
*trained on `labeled MPII train-set` and `unlabeled AIC train-set`*
|
29 |
-
* **HRNet-
|
30 |
|
31 |
|
|
|
12 |
**COCO1K / COCO5K / COCO10K**
|
13 |
|
14 |
*trained on `partly labeled (1k, 5k or 10k) COCO train-set` and `left unlabeled COCO train-set`*
|
15 |
+
* **ResNet-18 (Pose_Cons using single network)(256x192, COCO1K, 30 epochs)**: [pose_cons_18-COCO1K_e30-model_best.pth.tar](./pose_cons_18-COCO1K_e30-model_best.pth.tar)
|
16 |
+
* **ResNet-18 (Pose_Cons using single network)(256x192, COCO5K, 70 epochs)**: [pose_cons_18-COCO5K_e70-model_best.pth.tar](./pose_cons_18-COCO5K_e70-model_best.pth.tar)
|
17 |
+
* **ResNet-18 (Pose_Cons using single network)(256x192, COCO10K, 100 epochs)**: [pose_cons_18-COCO10K_e100-model_best.pth.tar](./pose_cons_18-COCO10K_e100-model_best.pth.tar)
|
18 |
+
* **ResNet-18 (Pose_Dual using dual networks)(256x192, COCO1K, 30 epochs)**: [pose_dual_18-COCO1K_e30-model_best.pth.tar](./pose_dual_18-COCO1K_e30-model_best.pth.tar)
|
19 |
+
* **ResNet-18 (Pose_Dual using dual networks)(256x192, COCO5K, 70 epochs)**: [pose_dual_18-COCO5K_e70-model_best.pth.tar](./pose_dual_18-COCO5K_e70-model_best.pth.tar)
|
20 |
+
* **ResNet-18 (Pose_Dual using dual networks)(256x192, COCO10K, 100 epochs)**: [pose_dual_18-COCO10K_e100-model_best.pth.tar](./pose_dual_18-COCO10K_e100-model_best.pth.tar)
|
21 |
+
|
22 |
|
23 |
**COCOall + COCOunlabel**
|
24 |
|
25 |
*trained on `labeled COCO train-set` and `unlabeled COCO unlabeled-set`*
|
26 |
+
* **ResNet-50 (Pose_Cons) (256x192, 400 epochs)**: [pose_cons_50-COCO_COCOunlabel_e400-model_best.pth.tar](./pose_cons_50-COCO_COCOunlabel_e400-model_best.pth.tar)
|
27 |
+
* **ResNet-101 (Pose_Cons) (256x192, 400 epochs)**: [pose_cons_101-COCO_COCOunlabel_e400-model_best.pth.tar](./pose_cons_101-COCO_COCOunlabel_e400-model_best.pth.tar)
|
28 |
+
* **HRNet-w48 (Pose_Cons) (384x288, 300 epochs)**: [pose_cons_w48-COCO_COCOunlabel_e300-model_best.pth.tar](./pose_cons_w48-COCO_COCOunlabel_e300-model_best.pth.tar)
|
29 |
+
* **ResNet-50 (Pose_Dual) (256x192, 400 epochs)**: [pose_dual_50-COCO_COCOunlabel_e400-model_best.pth.tar](./pose_dual_50-COCO_COCOunlabel_e400-model_best.pth.tar)
|
30 |
+
* **ResNet-101 (Pose_Dual) (256x192, 400 epochs)**: [pose_dual_101-COCO_COCOunlabel_e400-model_best.pth.tar](./pose_dual_101-COCO_COCOunlabel_e400-model_best.pth.tar)
|
31 |
+
* **HRNet-w48 (Pose_Dual) (384x288, 300 epochs)**: [pose_dual_w48-COCO_COCOunlabel_e300-model_best.pth.tar](./pose_dual_w48-COCO_COCOunlabel_e300-model_best.pth.tar)
|
32 |
+
|
33 |
|
34 |
**MPII + AIC**
|
35 |
|
36 |
*trained on `labeled MPII train-set` and `unlabeled AIC train-set`*
|
37 |
+
* **HRNet-w32 (Pose_Dual) (256x256, 400 epochs)** [We are sorry that it cannot be released due to company copyright issues]
|
38 |
|
39 |
|