--- library_name: transformers license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: longformer-combined-2epoch results: [] --- # longformer-combined-2epoch This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4259 - Accuracy: 0.71 - F1: 0.6410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.7476 | 0.0556 | 50 | 0.7044 | 0.494 | 0.3308 | | 0.7543 | 0.1111 | 100 | 0.7187 | 0.5215 | 0.3427 | | 0.6395 | 0.1667 | 150 | 0.7392 | 0.5215 | 0.3427 | | 0.6322 | 0.2222 | 200 | 0.5797 | 0.648 | 0.5771 | | 0.5879 | 0.2778 | 250 | 0.5351 | 0.678 | 0.5905 | | 0.5179 | 0.3333 | 300 | 0.5117 | 0.6975 | 0.6116 | | 0.5868 | 0.3889 | 350 | 0.5010 | 0.704 | 0.6184 | | 0.4915 | 0.4444 | 400 | 0.4662 | 0.72 | 0.6348 | | 0.5408 | 0.5 | 450 | 0.5064 | 0.67 | 0.5990 | | 0.4393 | 0.5556 | 500 | 0.4584 | 0.6965 | 0.6271 | | 0.4974 | 0.6111 | 550 | 0.4894 | 0.688 | 0.6183 | | 0.461 | 0.6667 | 600 | 0.4711 | 0.688 | 0.6184 | | 0.4446 | 0.7222 | 650 | 0.4520 | 0.719 | 0.6338 | | 0.4059 | 0.7778 | 700 | 0.5283 | 0.703 | 0.6166 | | 0.4914 | 0.8333 | 750 | 0.4977 | 0.6655 | 0.5949 | | 0.4506 | 0.8889 | 800 | 0.4973 | 0.7155 | 0.6303 | | 0.4433 | 0.9444 | 850 | 0.4571 | 0.6935 | 0.6239 | | 0.5217 | 1.0 | 900 | 0.4675 | 0.6875 | 0.6177 | | 0.5323 | 1.0556 | 950 | 0.4639 | 0.691 | 0.6213 | | 0.4469 | 1.1111 | 1000 | 0.4869 | 0.6815 | 0.6116 | | 0.4435 | 1.1667 | 1050 | 0.4606 | 0.698 | 0.6286 | | 0.4596 | 1.2222 | 1100 | 0.4464 | 0.7235 | 0.6384 | | 0.4454 | 1.2778 | 1150 | 0.4574 | 0.6985 | 0.6291 | | 0.4308 | 1.3333 | 1200 | 0.4343 | 0.7295 | 0.6446 | | 0.4656 | 1.3889 | 1250 | 0.4517 | 0.7235 | 0.6384 | | 0.4057 | 1.4444 | 1300 | 0.4412 | 0.7035 | 0.6343 | | 0.4322 | 1.5 | 1350 | 0.4306 | 0.7035 | 0.6343 | | 0.417 | 1.5556 | 1400 | 0.4269 | 0.7305 | 0.6457 | | 0.3974 | 1.6111 | 1450 | 0.4333 | 0.7295 | 0.6447 | | 0.41 | 1.6667 | 1500 | 0.4340 | 0.7045 | 0.6354 | | 0.4132 | 1.7222 | 1550 | 0.4532 | 0.7005 | 0.6312 | | 0.445 | 1.7778 | 1600 | 0.4399 | 0.733 | 0.6482 | | 0.4159 | 1.8333 | 1650 | 0.4374 | 0.7325 | 0.6477 | | 0.3858 | 1.8889 | 1700 | 0.4234 | 0.735 | 0.6503 | | 0.4641 | 1.9444 | 1750 | 0.4244 | 0.737 | 0.6524 | | 0.3893 | 2.0 | 1800 | 0.4259 | 0.71 | 0.6410 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1