Holden007 commited on
Commit
5ee16f0
·
verified ·
1 Parent(s): 4ed3299

First Commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -51.44 +/- 32.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2374c2e5c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2374c2e660>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2374c2e700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2374c2e7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2374c2e840>", "forward": "<function ActorCriticPolicy.forward at 0x7f2374c2e8e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2374c2e980>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2374c2ea20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2374c2eac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2374c2eb60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2374c2ec00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2374c2eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2374d3b480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738011758632220712, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0m0L1e1o4/G/LsvoVJWb82GCo9AYXIPAAAAAAAAAAAxt3YvoNXWT3C3QQ9pFr9vSOBjz47YE+/AAAAAAAAAABYfJW+M9ZVP2LOE79dE4K/oenjPh6+cj4AAAAAAAAAAIYDBb6FK5U/Y3MZv40yL7+7zqo9Xt19PAAAAAAAAAAA89nAvRHTqj/ZaTG/Qvi1vvaIFj41mnU+AAAAAAAAAAAAYOo6YokrP5q/V7zS8Gi/8fGCvUboOL4AAAAAAAAAAMAAF75apTg/pr/Jvpu4Y7+L32o+6zj0PQAAAAAAAAAAePeuvlsNv7wNVyk8TLSauwj6zj024Zk8AACAPwAAgD/ArJE9xzS9P8Dl+z4Hc4g9/6C5vX0P4r0AAAAAAAAAAKqxqT4U65Q/1/U3P3cCNb+kx+y+g7KSvgAAAAAAAAAAIxI5v5Iinz96Yp2/nMGIv/Eu3T/yvuA+AAAAAAAAAADmeYY9DIxEPwc6oj4URWG/gofevm3pG74AAAAAAAAAAGbjeT0x/3E/nr1DPve/Qr/IEVy+fNY6vgAAAAAAAAAAQCeyvi5LuT3eByi/PtyWv1NZ+z0OqfC8AAAAAAAAAACagr88nZ2HP4ge2T1g+12/6fjJva55uL0AAAAAAAAAADM0Jb46ts0/9vJDv9Fkhz7kthA+an0XPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDwx0HQhOgyMAWyUS12MAXSUR0A4oNrj5sTGdX2UKGgGR8BaQXcgyM1kaAdLXGgIR0A4ooGpuMuOdX2UKGgGR8Bb0DYZl4C7aAdLYmgIR0A4onyNGViXdX2UKGgGR8BmQ3MY/FBIaAdLd2gIR0A4pIpH7P6bdX2UKGgGR8BzXSFnIyTIaAdLbmgIR0A4ru3+dbxFdX2UKGgGR8ByLbD63y7PaAdLZWgIR0A4sDQ7cO9WdX2UKGgGR8Bedm8/UvwmaAdLV2gIR0A4znk1dgOSdX2UKGgGR8BNCyz5XU6QaAdLO2gIR0A41X5nDiwTdX2UKGgGR8BvCXh86V+raAdLP2gIR0A42agVXV9XdX2UKGgGR8BNJDjR2KVIaAdLQGgIR0A43c6/7BO6dX2UKGgGR8Bb8NbgTAWSaAdLVGgIR0A43kqMFUyYdX2UKGgGR8BjzR4B3iaRaAdLW2gIR0A443IMjNY9dX2UKGgGR8BWkXsXzlLfaAdLTWgIR0A45Q6ZH/cWdX2UKGgGR8BkzyDoQnQZaAdLS2gIR0A46ZlWfbsXdX2UKGgGR8BYmZIlMRHxaAdLS2gIR0A462W6bvw3dX2UKGgGR8BVCIrBj4HpaAdLTmgIR0A47TviLl3hdX2UKGgGR8Bksvmgam4zaAdLWWgIR0A48FsYVIqcdX2UKGgGR8Bw+mQMhHLBaAdLdGgIR0A5CvcrRSgodX2UKGgGR8BrxDZ39rGjaAdLYGgIR0A5DEfDDTBqdX2UKGgGR8BxobQZ4wAVaAdLd2gIR0A5EIiTt9hJdX2UKGgGR8B0UGY5T6zmaAdLe2gIR0A5EbAUL2HtdX2UKGgGR8BC2OsT37DVaAdLP2gIR0A5HCW/rSmZdX2UKGgGR8BePMAR02cbaAdLdmgIR0A5H/wRXfZVdX2UKGgGR8BcXGc8TzunaAdLO2gIR0A5JCnP3SKFdX2UKGgGR8Bdumxlg+hXaAdLQWgIR0A5KKyfL9uQdX2UKGgGR8BSZwdOqNp/aAdLPGgIR0A5KoAn2IwedX2UKGgGR8BeR2rjo6jnaAdLZmgIR0A5OSzw+dK/dX2UKGgGR8BujfQ0GeMAaAdLZWgIR0A5PFlCkXUIdX2UKGgGR8By0LgaWHDaaAdLdGgIR0A5QIVuaWondX2UKGgGR8Bxek6ZH/cWaAdLamgIR0A5RO7QLNOedX2UKGgGR8Bc8kgGKQ7taAdLZ2gIR0A5SGqxTsIFdX2UKGgGR8BtbbmwJPZaaAdLPWgIR0A5TGM4tHx0dX2UKGgGR8BIrJF1B+nZaAdLQWgIR0A5TxuKoAGTdX2UKGgGR8BdkbgwXZXdaAdLZWgIR0A5ThsImgJ1dX2UKGgGR8BWNHgP3BYWaAdLRGgIR0A5X9f1HvtudX2UKGgGR8BklOKAJ9iMaAdLTGgIR0A5Y5Zr56+ndX2UKGgGR8BfEXQD3dsSaAdLYWgIR0A5Z04BFNL2dX2UKGgGR8BYVSQxN7BwaAdLRWgIR0A5awco6S1WdX2UKGgGR8BXb7aVUuL8aAdLS2gIR0A5awDNhVlxdX2UKGgGR0AVaXqqwQlKaAdLcWgIR0A5eAC4jKPodX2UKGgGR8Bkd1nXd0q6aAdLVGgIR0A5eBPbfxc3dX2UKGgGR8BVuIjSofjkaAdLQWgIR0A5eZLZi/fwdX2UKGgGR8BYsGFi8WbgaAdLRGgIR0A5gLKmsNlRdX2UKGgGR8Bo/I60Y0l7aAdLQmgIR0A5g6AOJ+DwdX2UKGgGR8BEqxjJ+2E1aAdLSGgIR0A5kwnpjc2zdX2UKGgGR8B2I+KO1fE5aAdLX2gIR0A5pA80UGmldX2UKGgGR8BETdJz1bqyaAdLQmgIR0A5q5CWu5jIdX2UKGgGR8Boc9Fz+3pfaAdLY2gIR0A5r3zMA3kxdX2UKGgGR8BVwXH/95yEaAdLSWgIR0A5tvTw2ETQdX2UKGgGR8Bye9AhStNjaAdLbGgIR0A5vE4NqgyudX2UKGgGR8BjvOyAxzq9aAdLiWgIR0A5wqVyFPBSdX2UKGgGR8BwKaphnanKaAdLZ2gIR0A5z3np0OmSdX2UKGgGR8Bk5zSgGr0baAdLSmgIR0A504gzP8htdX2UKGgGR8BVhR5HEuQIaAdLUGgIR0A510yP+4smdX2UKGgGR8B3qdvR7Z3+aAdLaWgIR0A52orWiDdydX2UKGgGR8BidBqsU7CBaAdLWmgIR0A52oUSIxgzdX2UKGgGR8B9mk0XP7emaAdLe2gIR0A54SApazNVdX2UKGgGR8BTrbH+6y0KaAdLQmgIR0A58tGNJe3QdX2UKGgGR8B4CaURnOB2aAdLd2gIR0A59yyD7IkrdX2UKGgGR8B31yiudPLxaAdLe2gIR0A5+2JBPbfxdX2UKGgGR8BxvNthuwX7aAdLbGgIR0A6CA+pwS8KdX2UKGgGR8BUKeYD1XeWaAdLZ2gIR0A6FRU3n6l+dX2UKGgGR8BiQWzMRpUQaAdLPWgIR0A6G3PzFuNxdX2UKGgGR8BdwWyPdVNpaAdLaWgIR0A6IQ4S6DoRdX2UKGgGR8AQt0yP+4smaAdLR2gIR0A6JorWiDdydX2UKGgGR8BWEd6LOzIFaAdLRGgIR0A6Ki+cpb2UdX2UKGgGR8Bg2pwS8J2MaAdLYmgIR0A6LRiPQv6CdX2UKGgGR8BzIVp+MIeHaAdLa2gIR0A6MHZ9NN8FdX2UKGgGR8B8l2zC1qnFaAdLW2gIR0A6MkUbkwN9dX2UKGgGR8BoD7bHp8neaAdLfWgIR0A6PqUNayKOdX2UKGgGR8BwO6xLTQVsaAdLZ2gIR0A6RjB2wFC+dX2UKGgGR8BwK2n2qT8paAdLdWgIR0A6UnqFAVwhdX2UKGgGR8BYdLQ1JlJ6aAdLWWgIR0A6XUn5SFXadX2UKGgGR8B6fSrNnoPkaAdLXWgIR0A6XVQAMlTndX2UKGgGR8Bwqde3QUpNaAdLY2gIR0A6X3o9s7+2dX2UKGgGR8BnYa9RJmNBaAdLQmgIR0A6ZIC2c8T0dX2UKGgGR8BkzXBciW3SaAdLXmgIR0A6b+Zw4sErdX2UKGgGR8BQM9QO4G2UaAdLTWgIR0A6gYFJQLuydX2UKGgGR8B0ktxFRYRvaAdLZWgIR0A6hRxLkCFLdX2UKGgGR8BRK8spXp4baAdLVWgIR0A6iHGS6lLwdX2UKGgGR8BV2hRMvh60aAdLVWgIR0A6jsVclgMMdX2UKGgGR8BbbZIg/1QJaAdLZGgIR0A6kA0sOG0vdX2UKGgGR8Bg9D2Bas6raAdLVWgIR0A6kMBp5/smdX2UKGgGR8BbrzposZpBaAdLVmgIR0A6nn3L3bmEdX2UKGgGR8B3oLcM3IdVaAdLcmgIR0A6pPhAGB4EdX2UKGgGR8Bd2cYAKfFraAdLSGgIR0A6sqesgdOqdX2UKGgGR8CCnB0rbxmTaAdLY2gIR0A6uAmAskIHdX2UKGgGR8BmPRmyxA0LaAdLYGgIR0A6wdC3PRiPdX2UKGgGR8BciYgq3EydaAdLYWgIR0A6zr+YMOPOdX2UKGgGR8Bzk5eruIAPaAdLYGgIR0A61Yr8R+SbdX2UKGgGR8BcJfIsAeaKaAdLRmgIR0A61nhsImgKdX2UKGgGR8BaMpN9H+ZPaAdLQWgIR0A634RVZLZjdX2UKGgGR8Bil5MlC1JEaAdLYGgIR0A64nrY5DJEdX2UKGgGR8BB/AUcn3L3aAdLT2gIR0A65KmsNlRQdX2UKGgGR8BS1jriVB2PaAdLgmgIR0A69o7V8Ti9dX2UKGgGR8Biy5D3M6ikaAdLYmgIR0A6/mdRR/EwdX2UKGgGR8Bh0eLaVUuMaAdLPWgIR0A6/OpsGgSOdX2UKGgGR8B03ndXT3IuaAdLXGgIR0A6/7yQPqcFdX2UKGgGR8BinVJjDsMRaAdLVGgIR0A7BiW3Sa3JdX2UKGgGR8B28bOAy2x6aAdLZGgIR0A7B+qioKlYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b99096fd4507ace3eb6a20db898bb299638319c9f7bc2387f84e4de7f58452cd
3
+ size 147979
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2374c2e5c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2374c2e660>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2374c2e700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2374c2e7a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2374c2e840>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2374c2e8e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2374c2e980>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2374c2ea20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2374c2eac0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2374c2eb60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2374c2ec00>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2374c2eca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2374d3b480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 1000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1738011758632220712,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0m0L1e1o4/G/LsvoVJWb82GCo9AYXIPAAAAAAAAAAAxt3YvoNXWT3C3QQ9pFr9vSOBjz47YE+/AAAAAAAAAABYfJW+M9ZVP2LOE79dE4K/oenjPh6+cj4AAAAAAAAAAIYDBb6FK5U/Y3MZv40yL7+7zqo9Xt19PAAAAAAAAAAA89nAvRHTqj/ZaTG/Qvi1vvaIFj41mnU+AAAAAAAAAAAAYOo6YokrP5q/V7zS8Gi/8fGCvUboOL4AAAAAAAAAAMAAF75apTg/pr/Jvpu4Y7+L32o+6zj0PQAAAAAAAAAAePeuvlsNv7wNVyk8TLSauwj6zj024Zk8AACAPwAAgD/ArJE9xzS9P8Dl+z4Hc4g9/6C5vX0P4r0AAAAAAAAAAKqxqT4U65Q/1/U3P3cCNb+kx+y+g7KSvgAAAAAAAAAAIxI5v5Iinz96Yp2/nMGIv/Eu3T/yvuA+AAAAAAAAAADmeYY9DIxEPwc6oj4URWG/gofevm3pG74AAAAAAAAAAGbjeT0x/3E/nr1DPve/Qr/IEVy+fNY6vgAAAAAAAAAAQCeyvi5LuT3eByi/PtyWv1NZ+z0OqfC8AAAAAAAAAACagr88nZ2HP4ge2T1g+12/6fjJva55uL0AAAAAAAAAADM0Jb46ts0/9vJDv9Fkhz7kthA+an0XPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -15.384,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDwx0HQhOgyMAWyUS12MAXSUR0A4oNrj5sTGdX2UKGgGR8BaQXcgyM1kaAdLXGgIR0A4ooGpuMuOdX2UKGgGR8Bb0DYZl4C7aAdLYmgIR0A4onyNGViXdX2UKGgGR8BmQ3MY/FBIaAdLd2gIR0A4pIpH7P6bdX2UKGgGR8BzXSFnIyTIaAdLbmgIR0A4ru3+dbxFdX2UKGgGR8ByLbD63y7PaAdLZWgIR0A4sDQ7cO9WdX2UKGgGR8Bedm8/UvwmaAdLV2gIR0A4znk1dgOSdX2UKGgGR8BNCyz5XU6QaAdLO2gIR0A41X5nDiwTdX2UKGgGR8BvCXh86V+raAdLP2gIR0A42agVXV9XdX2UKGgGR8BNJDjR2KVIaAdLQGgIR0A43c6/7BO6dX2UKGgGR8Bb8NbgTAWSaAdLVGgIR0A43kqMFUyYdX2UKGgGR8BjzR4B3iaRaAdLW2gIR0A443IMjNY9dX2UKGgGR8BWkXsXzlLfaAdLTWgIR0A45Q6ZH/cWdX2UKGgGR8BkzyDoQnQZaAdLS2gIR0A46ZlWfbsXdX2UKGgGR8BYmZIlMRHxaAdLS2gIR0A462W6bvw3dX2UKGgGR8BVCIrBj4HpaAdLTmgIR0A47TviLl3hdX2UKGgGR8Bksvmgam4zaAdLWWgIR0A48FsYVIqcdX2UKGgGR8Bw+mQMhHLBaAdLdGgIR0A5CvcrRSgodX2UKGgGR8BrxDZ39rGjaAdLYGgIR0A5DEfDDTBqdX2UKGgGR8BxobQZ4wAVaAdLd2gIR0A5EIiTt9hJdX2UKGgGR8B0UGY5T6zmaAdLe2gIR0A5EbAUL2HtdX2UKGgGR8BC2OsT37DVaAdLP2gIR0A5HCW/rSmZdX2UKGgGR8BePMAR02cbaAdLdmgIR0A5H/wRXfZVdX2UKGgGR8BcXGc8TzunaAdLO2gIR0A5JCnP3SKFdX2UKGgGR8Bdumxlg+hXaAdLQWgIR0A5KKyfL9uQdX2UKGgGR8BSZwdOqNp/aAdLPGgIR0A5KoAn2IwedX2UKGgGR8BeR2rjo6jnaAdLZmgIR0A5OSzw+dK/dX2UKGgGR8BujfQ0GeMAaAdLZWgIR0A5PFlCkXUIdX2UKGgGR8By0LgaWHDaaAdLdGgIR0A5QIVuaWondX2UKGgGR8Bxek6ZH/cWaAdLamgIR0A5RO7QLNOedX2UKGgGR8Bc8kgGKQ7taAdLZ2gIR0A5SGqxTsIFdX2UKGgGR8BtbbmwJPZaaAdLPWgIR0A5TGM4tHx0dX2UKGgGR8BIrJF1B+nZaAdLQWgIR0A5TxuKoAGTdX2UKGgGR8BdkbgwXZXdaAdLZWgIR0A5ThsImgJ1dX2UKGgGR8BWNHgP3BYWaAdLRGgIR0A5X9f1HvtudX2UKGgGR8BklOKAJ9iMaAdLTGgIR0A5Y5Zr56+ndX2UKGgGR8BfEXQD3dsSaAdLYWgIR0A5Z04BFNL2dX2UKGgGR8BYVSQxN7BwaAdLRWgIR0A5awco6S1WdX2UKGgGR8BXb7aVUuL8aAdLS2gIR0A5awDNhVlxdX2UKGgGR0AVaXqqwQlKaAdLcWgIR0A5eAC4jKPodX2UKGgGR8Bkd1nXd0q6aAdLVGgIR0A5eBPbfxc3dX2UKGgGR8BVuIjSofjkaAdLQWgIR0A5eZLZi/fwdX2UKGgGR8BYsGFi8WbgaAdLRGgIR0A5gLKmsNlRdX2UKGgGR8Bo/I60Y0l7aAdLQmgIR0A5g6AOJ+DwdX2UKGgGR8BEqxjJ+2E1aAdLSGgIR0A5kwnpjc2zdX2UKGgGR8B2I+KO1fE5aAdLX2gIR0A5pA80UGmldX2UKGgGR8BETdJz1bqyaAdLQmgIR0A5q5CWu5jIdX2UKGgGR8Boc9Fz+3pfaAdLY2gIR0A5r3zMA3kxdX2UKGgGR8BVwXH/95yEaAdLSWgIR0A5tvTw2ETQdX2UKGgGR8Bye9AhStNjaAdLbGgIR0A5vE4NqgyudX2UKGgGR8BjvOyAxzq9aAdLiWgIR0A5wqVyFPBSdX2UKGgGR8BwKaphnanKaAdLZ2gIR0A5z3np0OmSdX2UKGgGR8Bk5zSgGr0baAdLSmgIR0A504gzP8htdX2UKGgGR8BVhR5HEuQIaAdLUGgIR0A510yP+4smdX2UKGgGR8B3qdvR7Z3+aAdLaWgIR0A52orWiDdydX2UKGgGR8BidBqsU7CBaAdLWmgIR0A52oUSIxgzdX2UKGgGR8B9mk0XP7emaAdLe2gIR0A54SApazNVdX2UKGgGR8BTrbH+6y0KaAdLQmgIR0A58tGNJe3QdX2UKGgGR8B4CaURnOB2aAdLd2gIR0A59yyD7IkrdX2UKGgGR8B31yiudPLxaAdLe2gIR0A5+2JBPbfxdX2UKGgGR8BxvNthuwX7aAdLbGgIR0A6CA+pwS8KdX2UKGgGR8BUKeYD1XeWaAdLZ2gIR0A6FRU3n6l+dX2UKGgGR8BiQWzMRpUQaAdLPWgIR0A6G3PzFuNxdX2UKGgGR8BdwWyPdVNpaAdLaWgIR0A6IQ4S6DoRdX2UKGgGR8AQt0yP+4smaAdLR2gIR0A6JorWiDdydX2UKGgGR8BWEd6LOzIFaAdLRGgIR0A6Ki+cpb2UdX2UKGgGR8Bg2pwS8J2MaAdLYmgIR0A6LRiPQv6CdX2UKGgGR8BzIVp+MIeHaAdLa2gIR0A6MHZ9NN8FdX2UKGgGR8B8l2zC1qnFaAdLW2gIR0A6MkUbkwN9dX2UKGgGR8BoD7bHp8neaAdLfWgIR0A6PqUNayKOdX2UKGgGR8BwO6xLTQVsaAdLZ2gIR0A6RjB2wFC+dX2UKGgGR8BwK2n2qT8paAdLdWgIR0A6UnqFAVwhdX2UKGgGR8BYdLQ1JlJ6aAdLWWgIR0A6XUn5SFXadX2UKGgGR8B6fSrNnoPkaAdLXWgIR0A6XVQAMlTndX2UKGgGR8Bwqde3QUpNaAdLY2gIR0A6X3o9s7+2dX2UKGgGR8BnYa9RJmNBaAdLQmgIR0A6ZIC2c8T0dX2UKGgGR8BkzXBciW3SaAdLXmgIR0A6b+Zw4sErdX2UKGgGR8BQM9QO4G2UaAdLTWgIR0A6gYFJQLuydX2UKGgGR8B0ktxFRYRvaAdLZWgIR0A6hRxLkCFLdX2UKGgGR8BRK8spXp4baAdLVWgIR0A6iHGS6lLwdX2UKGgGR8BV2hRMvh60aAdLVWgIR0A6jsVclgMMdX2UKGgGR8BbbZIg/1QJaAdLZGgIR0A6kA0sOG0vdX2UKGgGR8Bg9D2Bas6raAdLVWgIR0A6kMBp5/smdX2UKGgGR8BbrzposZpBaAdLVmgIR0A6nn3L3bmEdX2UKGgGR8B3oLcM3IdVaAdLcmgIR0A6pPhAGB4EdX2UKGgGR8Bd2cYAKfFraAdLSGgIR0A6sqesgdOqdX2UKGgGR8CCnB0rbxmTaAdLY2gIR0A6uAmAskIHdX2UKGgGR8BmPRmyxA0LaAdLYGgIR0A6wdC3PRiPdX2UKGgGR8BciYgq3EydaAdLYWgIR0A6zr+YMOPOdX2UKGgGR8Bzk5eruIAPaAdLYGgIR0A61Yr8R+SbdX2UKGgGR8BcJfIsAeaKaAdLRmgIR0A61nhsImgKdX2UKGgGR8BaMpN9H+ZPaAdLQWgIR0A634RVZLZjdX2UKGgGR8Bil5MlC1JEaAdLYGgIR0A64nrY5DJEdX2UKGgGR8BB/AUcn3L3aAdLT2gIR0A65KmsNlRQdX2UKGgGR8BS1jriVB2PaAdLgmgIR0A69o7V8Ti9dX2UKGgGR8Biy5D3M6ikaAdLYmgIR0A6/mdRR/EwdX2UKGgGR8Bh0eLaVUuMaAdLPWgIR0A6/OpsGgSOdX2UKGgGR8B03ndXT3IuaAdLXGgIR0A6/7yQPqcFdX2UKGgGR8BinVJjDsMRaAdLVGgIR0A7BiW3Sa3JdX2UKGgGR8B28bOAy2x6aAdLZGgIR0A7B+qioKlYdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f7fbeb7322fe0f36706270968812d888e2eeed7a33586476840feeb2ef604ff
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:149a97bd987647061f4545d43d502d19f163a2af0fa4b605f0bb28325c763c6f
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (158 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -51.4388467, "std_reward": 32.46631401928062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-27T21:10:47.106551"}