File size: 2,741 Bytes
			
			| 770f538 140b21f 770f538 222d986 770f538 140b21f 770f538 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | ---
library_name: transformers
license: mit
base_model: microsoft/table-transformer-structure-recognition-v1.1-all
tags:
- generated_from_trainer
datasets:
- tr-fin_table-dataset-v4
model-index:
- name: table-transformer-structure-recognition-v1.1-all-finetuned-v4
  results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# table-transformer-structure-recognition-v1.1-all-finetuned-v4
This model is a fine-tuned version of [microsoft/table-transformer-structure-recognition-v1.1-all](https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all) on the tr-fin_table-dataset-v4 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8161        | 12.5  | 50   | 1.8594          |
| 2.1356        | 25.0  | 100  | 1.8244          |
| 1.9666        | 37.5  | 150  | 1.7812          |
| 2.686         | 50.0  | 200  | 1.7117          |
| 1.8873        | 62.5  | 250  | 1.6662          |
| 2.0797        | 75.0  | 300  | 1.6360          |
| 2.2612        | 87.5  | 350  | 1.6419          |
| 1.954         | 100.0 | 400  | 1.6110          |
| 2.0358        | 112.5 | 450  | 1.6159          |
| 1.9712        | 125.0 | 500  | 1.6164          |
| 2.1658        | 137.5 | 550  | 1.6242          |
| 2.7702        | 150.0 | 600  | 1.6097          |
| 1.9429        | 162.5 | 650  | 1.6083          |
| 1.947         | 175.0 | 700  | 1.5989          |
| 2.0561        | 187.5 | 750  | 1.6029          |
| 2.0323        | 200.0 | 800  | 1.5877          |
| 2.0326        | 212.5 | 850  | 1.5870          |
| 1.7113        | 225.0 | 900  | 1.5835          |
| 1.6647        | 237.5 | 950  | 1.5811          |
| 2.2978        | 250.0 | 1000 | 1.5814          |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.0
 |