File size: 1,834 Bytes
87ecf47 d5cfe56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
datasets:
- jingyaogong/minimind_dataset
language:
- zh
base_model:
- HighCWu/Embformer-MiniMind-RLHF-0.1B
pipeline_tag: text-generation
library_name: transformers
---
# Embformer-MiniMind-R1-0.1B
A 0.1B distilled reasoning model of the reasearch note [Embformer: An Embedding-Weight-Only Transformer Architecture](https://doi.org/10.5281/zenodo.15736957), which trained on [jingyaogong/minimind_dataset](https://huggingface.co/datasets/jingyaogong/minimind_dataset) with 512 sequence length.
Run commands in the terminal:
```sh
pip install "transformers @ git+https://github.com/huggingface/transformers.git@cb0f604"
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "HighCWu/Embformer-MiniMind-R1-0.1B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
cache_dir=".cache"
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True,
cache_dir=".cache"
)
# prepare the model input
prompt = "请为我讲解“大语言模型”这个概念。"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
input_ids=model_inputs['input_ids'],
attention_mask=model_inputs['attention_mask'],
max_new_tokens=8192
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
print(tokenizer.decode(output_ids, skip_special_tokens=True))
```
|