HenryHHHH commited on
Commit
89d09f5
·
verified ·
1 Parent(s): c73afa8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -87,7 +87,7 @@ The model’s performance is evaluated on 200 queries created in-house. For more
87
 
88
  1. **Cosine Similarity using Word Embeddings**
89
  - **Description**: Measures semantic similarity by mapping words/phrases to vectors.
90
- - **Equation**: Cosine Similarity = \( \frac{\vec{A} \cdot \vec{B}}{||\vec{A}|| \, ||\vec{B}||} \)
91
  - **Example**: "The dog chased the cat." vs. "A canine pursued a feline." (High similarity)
92
 
93
  2. **Exact Match (EM)**
@@ -99,8 +99,8 @@ The model’s performance is evaluated on 200 queries created in-house. For more
99
  3. **ROUGE Score**
100
  - **Description**: Measures the overlap of the longest common subsequences between reference and response texts.
101
  - **Equation**:
102
- - Precision = \( \frac{LCS(R, C)}{\text{Length of } C} \)
103
- - Recall = \( \frac{LCS(R, C)}{\text{Length of } R} \)
104
 
105
  ### Model Evaluation Summary
106
 
 
87
 
88
  1. **Cosine Similarity using Word Embeddings**
89
  - **Description**: Measures semantic similarity by mapping words/phrases to vectors.
90
+ - **Equation**: Cosine Similarity = ( A B ) / ( ||A|| ||B|| )
91
  - **Example**: "The dog chased the cat." vs. "A canine pursued a feline." (High similarity)
92
 
93
  2. **Exact Match (EM)**
 
99
  3. **ROUGE Score**
100
  - **Description**: Measures the overlap of the longest common subsequences between reference and response texts.
101
  - **Equation**:
102
+ - Precision = Precision = LCS(R, C) / Length of C
103
+ - Recall = Recall = LCS(R, C) / Length of R
104
 
105
  ### Model Evaluation Summary
106