--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_ro results: [] --- # speecht5_finetuned_voxpopuli_ro This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.587 | 3.1221 | 100 | 0.4987 | | 0.5147 | 6.2443 | 200 | 0.4616 | | 0.4926 | 9.3664 | 300 | 0.4524 | | 0.4711 | 12.4885 | 400 | 0.4428 | | 0.4643 | 15.6107 | 500 | 0.4415 | | 0.4537 | 18.7328 | 600 | 0.4396 | | 0.446 | 21.8550 | 700 | 0.4379 | | 0.4419 | 24.9771 | 800 | 0.4367 | | 0.4412 | 28.1221 | 900 | 0.4338 | | 0.4365 | 31.2443 | 1000 | 0.4358 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0