vitvit commited on
Commit
01a12c9
·
verified ·
1 Parent(s): e34c175

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -31
README.md CHANGED
@@ -11,17 +11,7 @@ metrics:
11
  license: apache-2.0
12
  ---
13
 
14
- # Cross-Encoder for Natural Language Inference
15
- This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model is based on [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base)
16
-
17
- ## Training Data
18
- The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
19
-
20
- ## Performance
21
- - Accuracy on SNLI-test dataset: 92.38
22
- - Accuracy on MNLI mismatched set: 90.04
23
-
24
- For futher evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
25
 
26
  ## Usage
27
 
@@ -36,25 +26,6 @@ label_mapping = ['contradiction', 'entailment', 'neutral']
36
  labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
37
  ```
38
 
39
- ## Usage with Transformers AutoModel
40
- You can use the model also directly with Transformers library (without SentenceTransformers library):
41
- ```python
42
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
43
- import torch
44
-
45
- model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-v3-base')
46
- tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-v3-base')
47
-
48
- features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
49
-
50
- model.eval()
51
- with torch.no_grad():
52
- scores = model(**features).logits
53
- label_mapping = ['contradiction', 'entailment', 'neutral']
54
- labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
55
- print(labels)
56
- ```
57
-
58
  ## Zero-Shot Classification
59
  This model can also be used for zero-shot-classification:
60
  ```python
@@ -66,4 +37,6 @@ sent = "Apple just announced the newest iPhone X"
66
  candidate_labels = ["technology", "sports", "politics"]
67
  res = classifier(sent, candidate_labels)
68
  print(res)
69
- ```
 
 
 
11
  license: apache-2.0
12
  ---
13
 
14
+ # Hebrew Cross-Encoder Model
 
 
 
 
 
 
 
 
 
 
15
 
16
  ## Usage
17
 
 
26
  labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
27
  ```
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  ## Zero-Shot Classification
30
  This model can also be used for zero-shot-classification:
31
  ```python
 
37
  candidate_labels = ["technology", "sports", "politics"]
38
  res = classifier(sent, candidate_labels)
39
  print(res)
40
+ ```
41
+
42
+ Sequence