HatmanStack commited on
Commit
4b05d70
·
1 Parent(s): 627731d

comfy script

Browse files
Files changed (1) hide show
  1. README.md +125 -0
README.md CHANGED
@@ -42,4 +42,129 @@ print(final_answer)
42
  # stone pathway leading to the front door, text on the house reads "hello" in all caps,
43
  # blue sky above, shadows cast by the trees, sunlight creating contrast on the house's facade,
44
  # some plants visible near the bottom right corner, overall warm and serene atmosphere.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  ```
 
42
  # stone pathway leading to the front door, text on the house reads "hello" in all caps,
43
  # blue sky above, shadows cast by the trees, sunlight creating contrast on the house's facade,
44
  # some plants visible near the bottom right corner, overall warm and serene atmosphere.
45
+ ```
46
+
47
+ <h1>A Script for Comfy</h1>
48
+
49
+ ```python
50
+ import torch
51
+ import random
52
+ import hashlib
53
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
54
+
55
+ class PromptEnhancer:
56
+ def __init__(self):
57
+ # Set up device
58
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
59
+
60
+ # Model checkpoint
61
+ self.model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
62
+
63
+ # Tokenizer and Model
64
+ self.tokenizer = AutoTokenizer.from_pretrained(self.model_checkpoint)
65
+ self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_checkpoint).to(self.device)
66
+
67
+ # Initialize the node title and generated prompt
68
+ self.node_title = "Prompt Enhancer"
69
+ self.generated_prompt = ""
70
+
71
+ @classmethod
72
+ def INPUT_TYPES(cls):
73
+ return {
74
+ "required": {
75
+ "prompt": ("STRING",),
76
+ "seed": ("INT", {"default": 42, "min": 0, "max": 4294967295}), # Default seed, larger range
77
+ "repetition_penalty": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0}), # Default repetition penalty
78
+ "max_target_length": ("INT", {"default": 256, "min": 1, "max": 1024}), # Default max target length
79
+ "temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0}), # Default temperature
80
+ "top_k": ("INT", {"default": 50, "min": 1, "max": 1000}), # Default top-k
81
+ "top_p": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0}), # Default top-p
82
+ },
83
+ "optional": {
84
+ "prompts_list": ("LIST",), # List of prompts
85
+ }
86
+ }
87
+
88
+ RETURN_TYPES = ("STRING",) # Return only one string: the enhanced prompt
89
+ FUNCTION = "enhance_prompt"
90
+ CATEGORY = "TextEnhancement"
91
+
92
+ def generate_large_seed(self, seed, prompt):
93
+ # Combine the seed and prompt to create a unique string
94
+ unique_string = f"{seed}_{prompt}"
95
+
96
+ # Use a hash function to generate a large seed
97
+ hash_object = hashlib.sha256(unique_string.encode())
98
+ large_seed = int(hash_object.hexdigest(), 16) % (2**32)
99
+
100
+ return large_seed
101
+
102
+ def enhance_prompt(self, prompt, seed=42, repetition_penalty=1.2, max_target_length=256, temperature=0.7, top_k=50, top_p=0.9, prompts_list=None):
103
+ # Generate a large seed value
104
+ large_seed = self.generate_large_seed(seed, prompt)
105
+
106
+ # Set random seed for reproducibility
107
+ torch.manual_seed(large_seed)
108
+ random.seed(large_seed)
109
+
110
+ # Determine the prompts to process
111
+ prompts = [prompt] if prompts_list is None else prompts_list
112
+
113
+ enhanced_prompts = []
114
+ for p in prompts:
115
+ # Enhance prompt
116
+ prefix = "enhance prompt: "
117
+ input_text = prefix + p
118
+ input_ids = self.tokenizer(input_text, return_tensors="pt").input_ids.to(self.device)
119
+
120
+ # Generate a random seed for this generation
121
+ random_seed = torch.randint(0, 2**32 - 1, (1,)).item()
122
+ torch.manual_seed(random_seed)
123
+ random.seed(random_seed)
124
+
125
+ outputs = self.model.generate(
126
+ input_ids,
127
+ max_length=max_target_length,
128
+ num_return_sequences=1,
129
+ do_sample=True,
130
+ temperature=temperature,
131
+ repetition_penalty=repetition_penalty,
132
+ top_k=top_k,
133
+ top_p=top_p
134
+ )
135
+
136
+ final_answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
137
+ confidence_score = 1.0 # Default to 1.0 if no score is provided
138
+
139
+ # Print the generated prompt and confidence score
140
+ print(f"Generated Prompt: {final_answer} (Confidence: {confidence_score:.2f})")
141
+ enhanced_prompts.append((f"Enhanced Prompt: {final_answer}", confidence_score))
142
+
143
+ # Update the node title and generated prompt
144
+ if prompts_list is None:
145
+ self.node_title = f"Prompt Enhancer (Confidence: {confidence_score:.2f})"
146
+ self.generated_prompt = f"Enhanced Prompt: {final_answer}"
147
+ return (f"Enhanced Prompt: {final_answer}",)
148
+ else:
149
+ self.node_title = "Prompt Enhancer (Multiple Prompts)"
150
+ self.generated_prompt = "Multiple Prompts"
151
+ return enhanced_prompts
152
+
153
+ @property
154
+ def NODE_TITLE(self):
155
+ return self.node_title
156
+
157
+ @property
158
+ def GENERATED_PROMPT(self):
159
+ return self.generated_prompt
160
+
161
+ # A dictionary that contains all nodes you want to export with their names
162
+ NODE_CLASS_MAPPINGS = {
163
+ "PromptEnhancer": PromptEnhancer
164
+ }
165
+
166
+ # A dictionary that contains the friendly/humanly readable titles for the nodes
167
+ NODE_DISPLAY_NAME_MAPPINGS = {
168
+ "PromptEnhancer": "Prompt Enhancer"
169
+ }
170
  ```