Hanoch4869 commited on
Commit
f2f19d2
·
verified ·
1 Parent(s): 07f2bb8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -40
README.md CHANGED
@@ -14,36 +14,35 @@ tags:
14
  ![TransMind Logo](https://file.cdn.shimoko.com/trrr.png)
15
 
16
 
17
- **TransMind** 是基于先进大语言模型架构的通信领域专家模型,专为通信行业优化设计。本模型在强大的 QwQ-32B 基础架构上,通过领域特定的强化学习训练,实现了通信知识的深度融合与专业能力增强。这是一款拥有 320 亿参数的模型,其性能可与具备 6710 亿参数(其中 370 亿被激活)的 DeepSeek-R1 媲美。
18
 
19
- ## 模型亮点
20
 
 
 
21
 
22
- ### 🚀 通信领域专家级能力
23
- 精通通信协议(5G/6G, TCP/IP, HTTP/3等);深入理解无线通信原理与信号处理;网络优化与故障诊断专家;通信系统设计与规划能力;电信标准与规范专业解读
24
 
25
- ### 强化学习增强架构
26
- 基于QwQ-32B的320亿参数强大基础;通过大规模强化学习优化通信领域推理能力;多阶段训练融合通信专业数据;实现复杂通信问题深度推理与解决;采用通信场景专用奖励函数(技术准确性/解决方案可行性/效率优化/创新性);自适应学习机制动态调整策略
27
 
28
- ### 🛠️ 智能代理能力
29
- 支持通信专用工具集成与调用;根据网络环境反馈动态调整解决方案;端到端通信系统分析与优化;多步骤技术问题诊断与处理;实时性能监控与反馈循环
30
-
31
- ## 技术优势
32
 
33
  ```mermaid
34
  graph LR
35
- A[QwQ-32B基础架构] --> B[通信领域强化学习]
36
- B --> C[通信协议专家]
37
- B --> D[网络优化引擎]
38
- B --> E[系统设计能力]
39
  C --> F[TransMind]
40
  ````
41
 
42
 
43
- ## 快速使用
44
 
45
- 这里提供了一个带有 apply_chat_template 的代码示例,向您展示如何加载标记器和模型以及如何生成内容。
46
- `````
47
  from transformers import AutoModelForCausalLM, AutoTokenizer
48
 
49
  model_name = "Qwen/QwQ-32B"
@@ -80,26 +79,14 @@ print(response)
80
 
81
  ``````
82
 
83
- ## 贡献与许可
84
- 我们欢迎通信领域专家参与模型优化!请通过以下方式贡献:
85
- - 提交通信领域专业数据集
86
- - 报告领域特定问题和优化通信工具集成
87
-
88
-
89
- 许可证:Apache License 2.0
90
-
91
- SDK下载
92
- ```bash
93
- #安装ModelScope
94
- pip install modelscope
95
- ```
96
- ```python
97
- #SDK模型下载
98
- from modelscope import snapshot_download
99
- model_dir = snapshot_download('hanoch1/TransMind')
100
- ```
101
- Git下载
102
- ```
103
- #Git模型下载
104
- git clone https://www.modelscope.cn/hanoch1/TransMind.git
105
- ```
 
14
  ![TransMind Logo](https://file.cdn.shimoko.com/trrr.png)
15
 
16
 
17
+ **TransMind** is an expert AI model for the communications domain, built on an advanced large language model architecture and specifically optimized for the telecommunications industry. Developed on the robust QwQ-32B foundation, this model achieves deep integration of communication knowledge and enhanced professional capabilities through domain-specific reinforcement learning. With 32 billion parameters, its performance rivals DeepSeek-R1 (which utilizes 67.1B parameters, 37B activated).
18
 
19
+ ## Key Features
20
 
21
+ ### 🚀 Expert-Level Communication Capabilities
22
+ Mastery of communication protocols (5G/6G, TCP/IP, HTTP/3); Profound understanding of wireless communication principles & signal processing; Network optimization & fault diagnosis expertise; Communication system design & planning proficiency; Professional interpretation of telecom standards & specifications
23
 
24
+ ### Reinforcement Learning Enhanced Architecture
25
+ Powerful 32B-parameter foundation based on QwQ-32B; Optimized communication-domain reasoning via large-scale RL; Multi-phase training integrating specialized communication data; Deep reasoning for complex communication problem-solving; Domain-specific reward functions (Technical accuracy/Solution feasibility/Efficiency optimization/Innovation); Adaptive learning with dynamic strategy adjustment
26
 
27
+ ### 🛠️ Intelligent Agent Capabilities
28
+ Integrated communication-specific tool support; Dynamic solution adjustment based on network feedback; End-to-end system analysis & optimization; Multi-step technical diagnosis & troubleshooting; Real-time performance monitoring & feedback loops
29
 
30
+ ## Technical Advantages
 
 
 
31
 
32
  ```mermaid
33
  graph LR
34
+ A[QwQ-32B Base Architecture] --> B[Communication-Domain RL]
35
+ B --> C[Protocol Expertise]
36
+ B --> D[Network Optimization Engine]
37
+ B --> E[System Design Capabilities]
38
  C --> F[TransMind]
39
  ````
40
 
41
 
42
+ ## Quick Start
43
 
44
+ Example using apply_chat_template to load tokenizer/model and generate content:
45
+ `````python
46
  from transformers import AutoModelForCausalLM, AutoTokenizer
47
 
48
  model_name = "Qwen/QwQ-32B"
 
79
 
80
  ``````
81
 
82
+ ## Contribution & Licensing
83
+ We welcome communication domain experts to participate in model optimization! Contribute through:
84
+
85
+ Submitting specialized communication datasets
86
+
87
+ Reporting domain-specific issues
88
+
89
+ Optimizing communication tool integrations
90
+
91
+ License: Apache License 2.0
92
+