--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy model-index: - name: ft-hubert-on-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.825 --- # ft-hubert-on-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 0.6574 - Accuracy: 0.825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 100 | 1.5408 | 0.58 | | No log | 2.0 | 200 | 1.1600 | 0.615 | | No log | 3.0 | 300 | 0.9942 | 0.705 | | No log | 4.0 | 400 | 0.8390 | 0.77 | | 1.0814 | 5.0 | 500 | 0.8495 | 0.745 | | 1.0814 | 6.0 | 600 | 0.6807 | 0.79 | | 1.0814 | 7.0 | 700 | 0.7361 | 0.78 | | 1.0814 | 8.0 | 800 | 0.6250 | 0.815 | | 1.0814 | 9.0 | 900 | 0.6308 | 0.83 | | 0.2344 | 10.0 | 1000 | 0.6574 | 0.825 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0