--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilhubert-finetuned-pulse results: [] --- # distilhubert-finetuned-pulse This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6143 - Accuracy: 0.7143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6972 | 1.0 | 31 | 0.6880 | 0.7143 | | 0.703 | 2.0 | 62 | 0.6044 | 0.7143 | | 0.6737 | 3.0 | 93 | 0.6217 | 0.7143 | | 0.6756 | 4.0 | 124 | 0.6400 | 0.7143 | | 0.6557 | 5.0 | 155 | 0.6213 | 0.7143 | | 0.6778 | 6.0 | 186 | 0.6109 | 0.7143 | | 0.6884 | 7.0 | 217 | 0.6415 | 0.7143 | | 0.6364 | 8.0 | 248 | 0.6205 | 0.7143 | | 0.6506 | 9.0 | 279 | 0.6171 | 0.7143 | | 0.675 | 10.0 | 310 | 0.6139 | 0.7143 | | 0.7018 | 11.0 | 341 | 0.6145 | 0.7143 | | 0.6766 | 12.0 | 372 | 0.6099 | 0.7143 | | 0.6493 | 13.0 | 403 | 0.6131 | 0.7143 | | 0.6482 | 14.0 | 434 | 0.6138 | 0.7143 | | 0.8036 | 15.0 | 465 | 0.6143 | 0.7143 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0