File size: 1,683 Bytes
2fff992
 
 
 
 
 
 
 
3d5b45a
b4a2e88
 
 
2fff992
 
 
 
 
b4a2e88
2fff992
 
 
 
b4a2e88
 
2fff992
b4a2e88
5cc542c
2fff992
 
 
 
 
b4a2e88
 
 
2fff992
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
library_name: transformers
tags: []
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
**PPO-C** (PPO with Calibrated Reward Calculation) is an RLHF algorithm to mitigate verbalized overconfidence in RLHF-trained Large Language Models.
PPO-C adjusts standard reward model scores during PPO training. It maintains a running average of past reward scores as a dynamic threshold to
classify responses, and adjusts the reward scores based on model expressed verbalized confidence.
Please refer to our preprint ([Taming Overconfidence in LLMs: Reward Calibration in RLHF](https://arxiv.org/abs/2410.09724)) and [repo](https://github.com/SeanLeng1/Reward-Calibration) for more details.



## Model Details


### Model Description

<!-- Provide a longer summary of what this model is. -->

We train [OpenRLHF/Llama-3-8b-sft-mixture](https://huggingface.co/OpenRLHF/Llama-3-8b-sft-mixture) on our [HINT-lab/prompt-collections-final-v0.3](https://huggingface.co/datasets/HINT-lab/prompt-collections-final-v0.3)
with a vanilla reward model [OpenRLHF/Llama-3-8b-rm-mixture](https://huggingface.co/OpenRLHF/Llama-3-8b-rm-mixture).

- **Developed by:** Jixuan Leng, Chengsong Huang, Banghua Zhu, Jiaxin Huang
- **Finetuned from model:** [OpenRLHF/Llama-3-8b-sft-mixture](https://huggingface.co/OpenRLHF/Llama-3-8b-sft-mixture)

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [Our repo](https://github.com/SeanLeng1/Reward-Calibration)
- **Paper:** [Taming Overconfidence in LLMs: Reward Calibration in RLHF](https://arxiv.org/abs/2410.09724)
<!-- - **Demo [optional]:** [More Information Needed] -->