File size: 47,562 Bytes
0e4ebca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "njb_ProuHiOe"
      },
      "source": [
        "# Unit 1: Train your first Deep Reinforcement Learning Agent 🤖\n",
        "\n",
        "![Cover](https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/thumbnail.jpg)\n",
        "\n",
        "In this notebook, you'll train your **first Deep Reinforcement Learning agent** a Lunar Lander agent that will learn to **land correctly on the Moon 🌕**. Using [Stable-Baselines3](https://stable-baselines3.readthedocs.io/en/master/) a Deep Reinforcement Learning library, share them with the community, and experiment with different configurations\n",
        "\n",
        "⬇️ Here is an example of what **you will achieve in just a couple of minutes.** ⬇️\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PF46MwbZD00b"
      },
      "outputs": [],
      "source": [
        "%%html\n",
        "<video controls autoplay><source src=\"https://huggingface.co/sb3/ppo-LunarLander-v2/resolve/main/replay.mp4\" type=\"video/mp4\"></video>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "x7oR6R-ZIbeS"
      },
      "source": [
        "### The environment 🎮\n",
        "\n",
        "- [LunarLander-v2](https://gymnasium.farama.org/environments/box2d/lunar_lander/)\n",
        "\n",
        "### The library used 📚\n",
        "\n",
        "- [Stable-Baselines3](https://stable-baselines3.readthedocs.io/en/master/)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "OwEcFHe9RRZW"
      },
      "source": [
        "We're constantly trying to improve our tutorials, so **if you find some issues in this notebook**, please [open an issue on the Github Repo](https://github.com/huggingface/deep-rl-class/issues)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4i6tjI2tHQ8j"
      },
      "source": [
        "## Objectives of this notebook 🏆\n",
        "\n",
        "At the end of the notebook, you will:\n",
        "\n",
        "- Be able to use **Gymnasium**, the environment library.\n",
        "- Be able to use **Stable-Baselines3**, the deep reinforcement learning library.\n",
        "- Be able to **push your trained agent to the Hub** with a nice video replay and an evaluation score 🔥.\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ff-nyJdzJPND"
      },
      "source": [
        "## This notebook is from Deep Reinforcement Learning Course\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/deep-rl-course-illustration.jpg\" alt=\"Deep RL Course illustration\"/>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6p5HnEefISCB"
      },
      "source": [
        "In this free course, you will:\n",
        "\n",
        "- 📖 Study Deep Reinforcement Learning in **theory and practice**.\n",
        "- 🧑‍💻 Learn to **use famous Deep RL libraries** such as Stable Baselines3, RL Baselines3 Zoo, CleanRL and Sample Factory 2.0.\n",
        "- 🤖 Train **agents in unique environments**\n",
        "- 🎓 **Earn a certificate of completion** by completing 80% of the assignments.\n",
        "\n",
        "And more!\n",
        "\n",
        "Check 📚 the syllabus 👉 https://simoninithomas.github.io/deep-rl-course\n",
        "\n",
        "Don’t forget to **<a href=\"http://eepurl.com/ic5ZUD\">sign up to the course</a>** (we are collecting your email to be able to **send you the links when each Unit is published and give you information about the challenges and updates).**\n",
        "\n",
        "The best way to keep in touch and ask questions is **to join our discord server** to exchange with the community and with us 👉🏻 https://discord.gg/ydHrjt3WP5"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Y-mo_6rXIjRi"
      },
      "source": [
        "## Prerequisites 🏗️\n",
        "\n",
        "Before diving into the notebook, you need to:\n",
        "\n",
        "🔲 📝 **[Read Unit 0](https://huggingface.co/deep-rl-course/unit0/introduction)** that gives you all the **information about the course and helps you to onboard** 🤗\n",
        "\n",
        "🔲 📚 **Develop an understanding of the foundations of Reinforcement learning** (RL process, Rewards hypothesis...) by [reading Unit 1](https://huggingface.co/deep-rl-course/unit1/introduction)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HoeqMnr5LuYE"
      },
      "source": [
        "## A small recap of Deep Reinforcement Learning 📚\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/RL_process_game.jpg\" alt=\"The RL process\" width=\"100%\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xcQYx9ynaFMD"
      },
      "source": [
        "Let's do a small recap on what we learned in the first Unit:\n",
        "\n",
        "- Reinforcement Learning is a **computational approach to learning from actions**. We build an agent that learns from the environment by **interacting with it through trial and error** and receiving rewards (negative or positive) as feedback.\n",
        "\n",
        "- The goal of any RL agent is to **maximize its expected cumulative reward** (also called expected return) because RL is based on the _reward hypothesis_, which is that all goals can be described as the maximization of an expected cumulative reward.\n",
        "\n",
        "- The RL process is a **loop that outputs a sequence of state, action, reward, and next state**.\n",
        "\n",
        "- To calculate the expected cumulative reward (expected return), **we discount the rewards**: the rewards that come sooner (at the beginning of the game) are more probable to happen since they are more predictable than the long-term future reward.\n",
        "\n",
        "- To solve an RL problem, you want to **find an optimal policy**; the policy is the \"brain\" of your AI that will tell us what action to take given a state. The optimal one is the one that gives you the actions that max the expected return.\n",
        "\n",
        "There are **two** ways to find your optimal policy:\n",
        "\n",
        "- By **training your policy directly**: policy-based methods.\n",
        "- By **training a value function** that tells us the expected return the agent will get at each state and use this function to define our policy: value-based methods.\n",
        "\n",
        "- Finally, we spoke about Deep RL because **we introduce deep neural networks to estimate the action to take (policy-based) or to estimate the value of a state (value-based) hence the name \"deep.\"**"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qDploC3jSH99"
      },
      "source": [
        "# Let's train our first Deep Reinforcement Learning agent and upload it to the Hub 🚀\n",
        "\n",
        "## Get a certificate 🎓\n",
        "\n",
        "To validate this hands-on for the [certification process](https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process), you need to push your trained model to the Hub and **get a result of >= 200**.\n",
        "\n",
        "To find your result, go to the [leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) and find your model, **the result = mean_reward - std of reward**\n",
        "\n",
        "For more information about the certification process, check this section 👉 https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HqzznTzhNfAC"
      },
      "source": [
        "## Set the GPU 💪\n",
        "\n",
        "- To **accelerate the agent's training, we'll use a GPU**. To do that, go to `Runtime > Change Runtime type`\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step1.jpg\" alt=\"GPU Step 1\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "38HBd3t1SHJ8"
      },
      "source": [
        "- `Hardware Accelerator > GPU`\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step2.jpg\" alt=\"GPU Step 2\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "jeDAH0h0EBiG"
      },
      "source": [
        "## Install dependencies and create a virtual screen 🔽\n",
        "\n",
        "The first step is to install the dependencies, we’ll install multiple ones.\n",
        "\n",
        "- `gymnasium[box2d]`: Contains the LunarLander-v2 environment 🌛\n",
        "- `stable-baselines3[extra]`: The deep reinforcement learning library.\n",
        "- `huggingface_sb3`: Additional code for Stable-baselines3 to load and upload models from the Hugging Face 🤗 Hub.\n",
        "\n",
        "To make things easier, we created a script to install all these dependencies."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "yQIGLPDkGhgG"
      },
      "outputs": [],
      "source": [
        "!apt install swig cmake"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9XaULfDZDvrC"
      },
      "outputs": [],
      "source": [
        "!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit1/requirements-unit1.txt"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BEKeXQJsQCYm"
      },
      "source": [
        "During the notebook, we'll need to generate a replay video. To do so, with colab, **we need to have a virtual screen to be able to render the environment** (and thus record the frames).\n",
        "\n",
        "Hence the following cell will install virtual screen libraries and create and run a virtual screen 🖥"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "j5f2cGkdP-mb"
      },
      "outputs": [],
      "source": [
        "!sudo apt-get update\n",
        "!sudo apt-get install -y python3-opengl\n",
        "!apt install ffmpeg\n",
        "!apt install xvfb\n",
        "!pip3 install pyvirtualdisplay"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TCwBTAwAW9JJ"
      },
      "source": [
        "To make sure the new installed libraries are used, **sometimes it's required to restart the notebook runtime**. The next cell will force the **runtime to crash, so you'll need to connect again and run the code starting from here**. Thanks to this trick, **we will be able to run our virtual screen.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "cYvkbef7XEMi"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "os.kill(os.getpid(), 9)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "BE5JWP5rQIKf"
      },
      "outputs": [],
      "source": [
        "# Virtual display\n",
        "from pyvirtualdisplay import Display\n",
        "\n",
        "virtual_display = Display(visible=0, size=(1400, 900))\n",
        "virtual_display.start()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "wrgpVFqyENVf"
      },
      "source": [
        "## Import the packages 📦\n",
        "\n",
        "One additional library we import is huggingface_hub **to be able to upload and download trained models from the hub**.\n",
        "\n",
        "\n",
        "The Hugging Face Hub 🤗 works as a central place where anyone can share and explore models and datasets. It has versioning, metrics, visualizations and other features that will allow you to easily collaborate with others.\n",
        "\n",
        "You can see here all the Deep reinforcement Learning models available here👉 https://huggingface.co/models?pipeline_tag=reinforcement-learning&sort=downloads\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "cygWLPGsEQ0m"
      },
      "outputs": [],
      "source": [
        "import gymnasium\n",
        "\n",
        "from huggingface_sb3 import load_from_hub, package_to_hub\n",
        "from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.\n",
        "\n",
        "from stable_baselines3 import PPO\n",
        "from stable_baselines3.common.env_util import make_vec_env\n",
        "from stable_baselines3.common.evaluation import evaluate_policy\n",
        "from stable_baselines3.common.monitor import Monitor"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MRqRuRUl8CsB"
      },
      "source": [
        "## Understand Gymnasium and how it works 🤖\n",
        "\n",
        "🏋 The library containing our environment is called Gymnasium.\n",
        "**You'll use Gymnasium a lot in Deep Reinforcement Learning.**\n",
        "\n",
        "Gymnasium is the **new version of Gym library** [maintained by the Farama Foundation](https://farama.org/).\n",
        "\n",
        "The Gymnasium library provides two things:\n",
        "\n",
        "- An interface that allows you to **create RL environments**.\n",
        "- A **collection of environments** (gym-control, atari, box2D...).\n",
        "\n",
        "Let's look at an example, but first let's recall the RL loop.\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/RL_process_game.jpg\" alt=\"The RL process\" width=\"100%\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-TzNN0bQ_j-3"
      },
      "source": [
        "At each step:\n",
        "- Our Agent receives a **state (S0)** from the **Environment** — we receive the first frame of our game (Environment).\n",
        "- Based on that **state (S0),** the Agent takes an **action (A0)** — our Agent will move to the right.\n",
        "- The environment transitions to a **new** **state (S1)** — new frame.\n",
        "- The environment gives some **reward (R1)** to the Agent — we’re not dead *(Positive Reward +1)*.\n",
        "\n",
        "\n",
        "With Gymnasium:\n",
        "\n",
        "1️⃣ We create our environment using `gymnasium.make()`\n",
        "\n",
        "2️⃣ We reset the environment to its initial state with `observation = env.reset()`\n",
        "\n",
        "At each step:\n",
        "\n",
        "3️⃣ Get an action using our model (in our example we take a random action)\n",
        "\n",
        "4️⃣ Using `env.step(action)`, we perform this action in the environment and get\n",
        "- `observation`: The new state (st+1)\n",
        "- `reward`: The reward we get after executing the action\n",
        "- `terminated`: Indicates if the episode terminated (agent reach the terminal state)\n",
        "- `truncated`: Introduced with this new version, it indicates a timelimit or if an agent go out of bounds of the environment for instance.\n",
        "- `info`: A dictionary that provides additional information (depends on the environment).\n",
        "\n",
        "For more explanations check this 👉 https://gymnasium.farama.org/api/env/#gymnasium.Env.step\n",
        "\n",
        "If the episode is terminated:\n",
        "- We reset the environment to its initial state with `observation = env.reset()`\n",
        "\n",
        "**Let's look at an example!** Make sure to read the code\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "w7vOFlpA_ONz"
      },
      "outputs": [],
      "source": [
        "import gymnasium as gym\n",
        "\n",
        "# First, we create our environment called LunarLander-v2\n",
        "env = gym.make(\"LunarLander-v2\")\n",
        "\n",
        "# Then we reset this environment\n",
        "observation, info = env.reset()\n",
        "\n",
        "for _ in range(20):\n",
        "  # Take a random action\n",
        "  action = env.action_space.sample()\n",
        "  print(\"Action taken:\", action)\n",
        "\n",
        "  # Do this action in the environment and get\n",
        "  # next_state, reward, terminated, truncated and info\n",
        "  observation, reward, terminated, truncated, info = env.step(action)\n",
        "\n",
        "  # If the game is terminated (in our case we land, crashed) or truncated (timeout)\n",
        "  if terminated or truncated:\n",
        "      # Reset the environment\n",
        "      print(\"Environment is reset\")\n",
        "      observation, info = env.reset()\n",
        "\n",
        "env.close()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XIrKGGSlENZB"
      },
      "source": [
        "## Create the LunarLander environment 🌛 and understand how it works\n",
        "\n",
        "### [The environment 🎮](https://gymnasium.farama.org/environments/box2d/lunar_lander/)\n",
        "\n",
        "In this first tutorial, we’re going to train our agent, a [Lunar Lander](https://gymnasium.farama.org/environments/box2d/lunar_lander/), **to land correctly on the moon**. To do that, the agent needs to learn **to adapt its speed and position (horizontal, vertical, and angular) to land correctly.**\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "💡 A good habit when you start to use an environment is to check its documentation\n",
        "\n",
        "👉 https://gymnasium.farama.org/environments/box2d/lunar_lander/\n",
        "\n",
        "---\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "poLBgRocF9aT"
      },
      "source": [
        "Let's see what the Environment looks like:\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ZNPG0g_UGCfh"
      },
      "outputs": [],
      "source": [
        "# We create our environment with gym.make(\"<name_of_the_environment>\")\n",
        "env = gym.make(\"LunarLander-v2\")\n",
        "env.reset()\n",
        "print(\"_____OBSERVATION SPACE_____ \\n\")\n",
        "print(\"Observation Space Shape\", env.observation_space.shape)\n",
        "print(\"Sample observation\", env.observation_space.sample()) # Get a random observation"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2MXc15qFE0M9"
      },
      "source": [
        "We see with `Observation Space Shape (8,)` that the observation is a vector of size 8, where each value contains different information about the lander:\n",
        "- Horizontal pad coordinate (x)\n",
        "- Vertical pad coordinate (y)\n",
        "- Horizontal speed (x)\n",
        "- Vertical speed (y)\n",
        "- Angle\n",
        "- Angular speed\n",
        "- If the left leg contact point has touched the land (boolean)\n",
        "- If the right leg contact point has touched the land (boolean)\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "We5WqOBGLoSm"
      },
      "outputs": [],
      "source": [
        "print(\"\\n _____ACTION SPACE_____ \\n\")\n",
        "print(\"Action Space Shape\", env.action_space.n)\n",
        "print(\"Action Space Sample\", env.action_space.sample()) # Take a random action"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MyxXwkI2Magx"
      },
      "source": [
        "The action space (the set of possible actions the agent can take) is discrete with 4 actions available 🎮:\n",
        "\n",
        "- Action 0: Do nothing,\n",
        "- Action 1: Fire left orientation engine,\n",
        "- Action 2: Fire the main engine,\n",
        "- Action 3: Fire right orientation engine.\n",
        "\n",
        "Reward function (the function that will give a reward at each timestep) 💰:\n",
        "\n",
        "After every step a reward is granted. The total reward of an episode is the **sum of the rewards for all the steps within that episode**.\n",
        "\n",
        "For each step, the reward:\n",
        "\n",
        "- Is increased/decreased the closer/further the lander is to the landing pad.\n",
        "-  Is increased/decreased the slower/faster the lander is moving.\n",
        "- Is decreased the more the lander is tilted (angle not horizontal).\n",
        "- Is increased by 10 points for each leg that is in contact with the ground.\n",
        "- Is decreased by 0.03 points each frame a side engine is firing.\n",
        "- Is decreased by 0.3 points each frame the main engine is firing.\n",
        "\n",
        "The episode receive an **additional reward of -100 or +100 points for crashing or landing safely respectively.**\n",
        "\n",
        "An episode is **considered a solution if it scores at least 200 points.**"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "dFD9RAFjG8aq"
      },
      "source": [
        "#### Vectorized Environment\n",
        "\n",
        "- We create a vectorized environment (a method for stacking multiple independent environments into a single environment) of 16 environments, this way, **we'll have more diverse experiences during the training.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "99hqQ_etEy1N"
      },
      "outputs": [],
      "source": [
        "# Create the environment\n",
        "env = make_vec_env('LunarLander-v2', n_envs=16)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VgrE86r5E5IK"
      },
      "source": [
        "## Create the Model 🤖\n",
        "- We have studied our environment and we understood the problem: **being able to land the Lunar Lander to the Landing Pad correctly by controlling left, right and main orientation engine**. Now let's build the algorithm we're going to use to solve this Problem 🚀.\n",
        "\n",
        "- To do so, we're going to use our first Deep RL library, [Stable Baselines3 (SB3)](https://stable-baselines3.readthedocs.io/en/master/).\n",
        "\n",
        "- SB3 is a set of **reliable implementations of reinforcement learning algorithms in PyTorch**.\n",
        "\n",
        "---\n",
        "\n",
        "💡 A good habit when using a new library is to dive first on the documentation: https://stable-baselines3.readthedocs.io/en/master/ and then try some tutorials.\n",
        "\n",
        "----"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HLlClRW37Q7e"
      },
      "source": [
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/sb3.png\" alt=\"Stable Baselines3\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HV4yiUM_9_Ka"
      },
      "source": [
        "To solve this problem, we're going to use SB3 **PPO**. [PPO (aka Proximal Policy Optimization) is one of the SOTA (state of the art) Deep Reinforcement Learning algorithms that you'll study during this course](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html#example%5D).\n",
        "\n",
        "PPO is a combination of:\n",
        "- *Value-based reinforcement learning method*: learning an action-value function that will tell us the **most valuable action to take given a state and action**.\n",
        "- *Policy-based reinforcement learning method*: learning a policy that will **give us a probability distribution over actions**."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5qL_4HeIOrEJ"
      },
      "source": [
        "Stable-Baselines3 is easy to set up:\n",
        "\n",
        "1️⃣ You **create your environment** (in our case it was done above)\n",
        "\n",
        "2️⃣ You define the **model you want to use and instantiate this model** `model = PPO(\"MlpPolicy\")`\n",
        "\n",
        "3️⃣ You **train the agent** with `model.learn` and define the number of training timesteps\n",
        "\n",
        "```\n",
        "# Create environment\n",
        "env = gym.make('LunarLander-v2')\n",
        "\n",
        "# Instantiate the agent\n",
        "model = PPO('MlpPolicy', env, verbose=1)\n",
        "# Train the agent\n",
        "model.learn(total_timesteps=int(2e5))\n",
        "```\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "nxI6hT1GE4-A"
      },
      "outputs": [],
      "source": [
        "# TODO: Define a PPO MlpPolicy architecture\n",
        "# We use MultiLayerPerceptron (MLPPolicy) because the input is a vector,\n",
        "# if we had frames as input we would use CnnPolicy\n",
        "# Create environment\n",
        "env = gym.make('LunarLander-v2')\n",
        "\n",
        "# Instantiate the agent\n",
        "model = PPO(\n",
        "    policy = 'MlpPolicy',\n",
        "    env = env,\n",
        "    n_steps = 1024,\n",
        "    batch_size = 64,\n",
        "    n_epochs = 4,\n",
        "    gamma = 0.999,\n",
        "    gae_lambda = 0.98,\n",
        "    ent_coef = 0.01,\n",
        "    verbose=1)\n",
        "# Train the agent\n",
        "model.learn(total_timesteps=int(2e5))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QAN7B0_HCVZC"
      },
      "source": [
        "#### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "543OHYDfcjK4"
      },
      "outputs": [],
      "source": [
        "# SOLUTION\n",
        "# We added some parameters to accelerate the training\n",
        "model = PPO(\n",
        "    policy = 'MlpPolicy',\n",
        "    env = env,\n",
        "    n_steps = 1024,\n",
        "    batch_size = 64,\n",
        "    n_epochs = 4,\n",
        "    gamma = 0.999,\n",
        "    gae_lambda = 0.98,\n",
        "    ent_coef = 0.01,\n",
        "    verbose=1)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ClJJk88yoBUi"
      },
      "source": [
        "## Train the PPO agent 🏃\n",
        "- Let's train our agent for 1,000,000 timesteps, don't forget to use GPU on Colab. It will take approximately ~20min, but you can use fewer timesteps if you just want to try it out.\n",
        "- During the training, take a ☕ break you deserved it 🤗"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "qKnYkNiVp89p"
      },
      "outputs": [],
      "source": [
        "# Train it for 1,000,000 timesteps\n",
        "model.learn(total_timesteps=1000000)\n",
        "# Save the model\n",
        "model_name = \"ppo-LunarLander-v2\"\n",
        "model.save(model_name)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "1bQzQ-QcE3zo"
      },
      "source": [
        "#### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "poBCy9u_csyR"
      },
      "outputs": [],
      "source": [
        "# SOLUTION\n",
        "# Train it for 1,000,000 timesteps\n",
        "model.learn(total_timesteps=1000000)\n",
        "# Save the model\n",
        "model_name = \"ppo-LunarLander-v2\"\n",
        "model.save(model_name)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BY_HuedOoISR"
      },
      "source": [
        "## Evaluate the agent 📈\n",
        "- Remember to wrap the environment in a [Monitor](https://stable-baselines3.readthedocs.io/en/master/common/monitor.html).\n",
        "- Now that our Lunar Lander agent is trained 🚀, we need to **check its performance**.\n",
        "- Stable-Baselines3 provides a method to do that: `evaluate_policy`.\n",
        "- To fill that part you need to [check the documentation](https://stable-baselines3.readthedocs.io/en/master/guide/examples.html#basic-usage-training-saving-loading)\n",
        "- In the next step,  we'll see **how to automatically evaluate and share your agent to compete in a leaderboard, but for now let's do it ourselves**\n",
        "\n",
        "\n",
        "💡 When you evaluate your agent, you should not use your training environment but create an evaluation environment."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "yRpno0glsADy"
      },
      "outputs": [],
      "source": [
        "eval_env = Monitor(gym.make(\"LunarLander-v2\", render_mode='rgb_array'))\n",
        "mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)\n",
        "print(f\"mean_reward={mean_reward:.2f} +/- {std_reward}\")\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BqPKw3jt_pG5"
      },
      "source": [
        "#### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "zpz8kHlt_a_m"
      },
      "outputs": [],
      "source": [
        "#@title\n",
        "eval_env = Monitor(gym.make(\"LunarLander-v2\", render_mode='rgb_array'))\n",
        "mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)\n",
        "print(f\"mean_reward={mean_reward:.2f} +/- {std_reward}\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "reBhoODwcXfr"
      },
      "source": [
        "- In my case, I got a mean reward of `200.20 +/- 20.80` after training for 1 million steps, which means that our lunar lander agent is ready to land on the moon 🌛🥳."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IK_kR78NoNb2"
      },
      "source": [
        "## Publish our trained model on the Hub 🔥\n",
        "Now that we saw we got good results after the training, we can publish our trained model on the hub 🤗 with one line of code.\n",
        "\n",
        "📚 The libraries documentation 👉 https://github.com/huggingface/huggingface_sb3/tree/main#hugging-face--x-stable-baselines3-v20\n",
        "\n",
        "Here's an example of a Model Card (with Space Invaders):"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Gs-Ew7e1gXN3"
      },
      "source": [
        "By using `package_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the hub**.\n",
        "\n",
        "This way:\n",
        "- You can **showcase our work** 🔥\n",
        "- You can **visualize your agent playing** 👀\n",
        "- You can **share with the community an agent that others can use** 💾\n",
        "- You can **access a leaderboard 🏆 to see how well your agent is performing compared to your classmates** 👉 https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "JquRrWytA6eo"
      },
      "source": [
        "To be able to share your model with the community there are three more steps to follow:\n",
        "\n",
        "1️⃣ (If it's not already done) create an account on Hugging Face ➡ https://huggingface.co/join\n",
        "\n",
        "2️⃣ Sign in and then, you need to store your authentication token from the Hugging Face website.\n",
        "- Create a new token (https://huggingface.co/settings/tokens) **with write role**\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/create-token.jpg\" alt=\"Create HF Token\">\n",
        "\n",
        "- Copy the token\n",
        "- Run the cell below and paste the token"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GZiFBBlzxzxY"
      },
      "outputs": [],
      "source": [
        "notebook_login()\n",
        "!git config --global credential.helper store"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_tsf2uv0g_4p"
      },
      "source": [
        "If you don't want to use a Google Colab or a Jupyter Notebook, you need to use this command instead: `huggingface-cli login`"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "FGNh9VsZok0i"
      },
      "source": [
        "3️⃣ We're now ready to push our trained agent to the 🤗 Hub 🔥 using `package_to_hub()` function"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ay24l6bqFF18"
      },
      "source": [
        "Let's fill the `package_to_hub` function:\n",
        "- `model`: our trained model.\n",
        "- `model_name`: the name of the trained model that we defined in `model_save`\n",
        "- `model_architecture`: the model architecture we used, in our case PPO\n",
        "- `env_id`: the name of the environment, in our case `LunarLander-v2`\n",
        "- `eval_env`: the evaluation environment defined in eval_env\n",
        "- `repo_id`: the name of the Hugging Face Hub Repository that will be created/updated `(repo_id = {username}/{repo_name})`\n",
        "\n",
        "💡 **A good name is {username}/{model_architecture}-{env_id}**\n",
        "\n",
        "- `commit_message`: message of the commit"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JPG7ofdGIHN8"
      },
      "outputs": [],
      "source": [
        "import gymnasium as gym\n",
        "\n",
        "from stable_baselines3 import PPO\n",
        "from stable_baselines3.common.vec_env import DummyVecEnv\n",
        "from stable_baselines3.common.env_util import make_vec_env\n",
        "\n",
        "from huggingface_sb3 import package_to_hub\n",
        "\n",
        "# PLACE the variables you've just defined two cells above\n",
        "# Define the name of the environment\n",
        "env_id = \"LunarLander-v2\"\n",
        "\n",
        "# TODO: Define the model architecture we used\n",
        "model_architecture = \"PPO\"\n",
        "\n",
        "## Define a repo_id\n",
        "## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2\n",
        "## CHANGE WITH YOUR REPO ID\n",
        "repo_id = \"Gyaneshere/ppo-LunarLander-v2\" # Change with your repo id, you can't push with mine 😄\n",
        "\n",
        "## Define the commit message\n",
        "commit_message = \"Upload PPO LunarLander-v2 trained agent\"\n",
        "\n",
        "# Create the evaluation env and set the render_mode=\"rgb_array\"\n",
        "eval_env = DummyVecEnv([lambda: gym.make(env_id, render_mode=\"rgb_array\")])\n",
        "\n",
        "# PLACE the package_to_hub function you've just filled here\n",
        "package_to_hub(model=model, # Our trained model\n",
        "               model_name=model_name, # The name of our trained model\n",
        "               model_architecture=model_architecture, # The model architecture we used: in our case PPO\n",
        "               env_id=env_id, # Name of the environment\n",
        "               eval_env=eval_env, # Evaluation Environment\n",
        "               repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2\n",
        "               commit_message=commit_message)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Avf6gufJBGMw"
      },
      "source": [
        "#### Solution\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "I2E--IJu8JYq"
      },
      "outputs": [],
      "source": [
        "import gymnasium as gym\n",
        "\n",
        "from stable_baselines3 import PPO\n",
        "from stable_baselines3.common.vec_env import DummyVecEnv\n",
        "from stable_baselines3.common.env_util import make_vec_env\n",
        "\n",
        "from huggingface_sb3 import package_to_hub\n",
        "\n",
        "# PLACE the variables you've just defined two cells above\n",
        "# Define the name of the environment\n",
        "env_id = \"LunarLander-v2\"\n",
        "\n",
        "# TODO: Define the model architecture we used\n",
        "model_architecture = \"PPO\"\n",
        "\n",
        "## Define a repo_id\n",
        "## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2\n",
        "## CHANGE WITH YOUR REPO ID\n",
        "repo_id = \"ThomasSimonini/ppo-LunarLander-v2\" # Change with your repo id, you can't push with mine 😄\n",
        "\n",
        "## Define the commit message\n",
        "commit_message = \"Upload PPO LunarLander-v2 trained agent\"\n",
        "\n",
        "# Create the evaluation env and set the render_mode=\"rgb_array\"\n",
        "eval_env = DummyVecEnv([lambda: gym.make(env_id, render_mode=\"rgb_array\")])\n",
        "\n",
        "# PLACE the package_to_hub function you've just filled here\n",
        "package_to_hub(model=model, # Our trained model\n",
        "               model_name=model_name, # The name of our trained model\n",
        "               model_architecture=model_architecture, # The model architecture we used: in our case PPO\n",
        "               env_id=env_id, # Name of the environment\n",
        "               eval_env=eval_env, # Evaluation Environment\n",
        "               repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2\n",
        "               commit_message=commit_message)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "T79AEAWEFIxz"
      },
      "source": [
        "Congrats 🥳 you've just trained and uploaded your first Deep Reinforcement Learning agent. The script above should have displayed a link to a model repository such as https://huggingface.co/osanseviero/test_sb3. When you go to this link, you can:\n",
        "* See a video preview of your agent at the right.\n",
        "* Click \"Files and versions\" to see all the files in the repository.\n",
        "* Click \"Use in stable-baselines3\" to get a code snippet that shows how to load the model.\n",
        "* A model card (`README.md` file) which gives a description of the model\n",
        "\n",
        "Under the hood, the Hub uses git-based repositories (don't worry if you don't know what git is), which means you can update the model with new versions as you experiment and improve your agent.\n",
        "\n",
        "Compare the results of your LunarLander-v2 with your classmates using the leaderboard 🏆 👉 https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9nWnuQHRfFRa"
      },
      "source": [
        "## Load a saved LunarLander model from the Hub 🤗\n",
        "Thanks to [ironbar](https://github.com/ironbar) for the contribution.\n",
        "\n",
        "Loading a saved model from the Hub is really easy.\n",
        "\n",
        "You go to https://huggingface.co/models?library=stable-baselines3 to see the list of all the Stable-baselines3 saved models.\n",
        "1. You select one and copy its repo_id\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit1/copy-id.png\" alt=\"Copy-id\"/>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hNPLJF2bfiUw"
      },
      "source": [
        "2. Then we just need to use load_from_hub with:\n",
        "- The repo_id\n",
        "- The filename: the saved model inside the repo and its extension (*.zip)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "bhb9-NtsinKB"
      },
      "source": [
        "Because the model I download from the Hub was trained with Gym (the former version of Gymnasium) we need to install shimmy a API conversion tool that will help us to run the environment correctly.\n",
        "\n",
        "Shimmy Documentation: https://github.com/Farama-Foundation/Shimmy"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "03WI-bkci1kH"
      },
      "outputs": [],
      "source": [
        "!pip install gymnasium==0.29\n",
        "!pip install shimmy==1.3.0"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "oj8PSGHJfwz3"
      },
      "outputs": [],
      "source": [
        "from huggingface_sb3 import load_from_hub\n",
        "from stable_baselines3 import PPO\n",
        "\n",
        "repo_id = \"Gyaneshere/ppo-LunarLander-v2\" # The repo_id\n",
        "filename = \"ppo-LunarLander-v2.zip\" # The model filename.zip\n",
        "\n",
        "# When the model was trained on Python 3.8 the pickle protocol is 5\n",
        "# But Python 3.6, 3.7 use protocol 4\n",
        "# In order to get compatibility we need to:\n",
        "# 1. Install pickle5 (we done it at the beginning of the colab)\n",
        "# 2. Create a custom empty object we pass as parameter to PPO.load()\n",
        "custom_objects = {\n",
        "            \"learning_rate\": 0.0,\n",
        "            \"lr_schedule\": lambda _: 0.0,\n",
        "            \"clip_range\": lambda _: 0.0,\n",
        "}\n",
        "\n",
        "checkpoint = load_from_hub(repo_id, filename)\n",
        "model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Fs0Y-qgPgLUf"
      },
      "source": [
        "Let's evaluate this agent:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PAEVwK-aahfx"
      },
      "outputs": [],
      "source": [
        "from stable_baselines3.common.monitor import Monitor\n",
        "import gymnasium as gym\n",
        "from stable_baselines3.common.evaluation import evaluate_policy\n",
        "\n",
        "#@title\n",
        "eval_env = Monitor(gym.make(\"LunarLander-v2\"))\n",
        "mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)\n",
        "print(f\"mean_reward={mean_reward:.2f} +/- {std_reward}\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BQAwLnYFPk-s"
      },
      "source": [
        "## Some additional challenges 🏆\n",
        "The best way to learn **is to try things by your own**! As you saw, the current agent is not doing great. As a first suggestion, you can train for more steps. With 1,000,000 steps, we saw some great results!\n",
        "\n",
        "In the [Leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) you will find your agents. Can you get to the top?\n",
        "\n",
        "Here are some ideas to achieve so:\n",
        "* Train more steps\n",
        "* Try different hyperparameters for `PPO`. You can see them at https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html#parameters.\n",
        "* Check the [Stable-Baselines3 documentation](https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html) and try another model such as DQN.\n",
        "* **Push your new trained model** on the Hub 🔥\n",
        "\n",
        "**Compare the results of your LunarLander-v2 with your classmates** using the [leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) 🏆\n",
        "\n",
        "Is moon landing too boring for you? Try to **change the environment**, why not use MountainCar-v0, CartPole-v1 or CarRacing-v0? Check how they work [using the gym documentation](https://www.gymlibrary.dev/) and have fun 🎉."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9lM95-dvmif8"
      },
      "source": [
        "________________________________________________________________________\n",
        "Congrats on finishing this chapter! That was the biggest one, **and there was a lot of information.**\n",
        "\n",
        "If you’re still feel confused with all these elements...it's totally normal! **This was the same for me and for all people who studied RL.**\n",
        "\n",
        "Take time to really **grasp the material before continuing and try the additional challenges**. It’s important to master these elements and have a solid foundations.\n",
        "\n",
        "Naturally, during the course, we’re going to dive deeper into these concepts but **it’s better to have a good understanding of them now before diving into the next chapters.**\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BjLhT70TEZIn"
      },
      "source": [
        "Next time, in the bonus unit 1, you'll train Huggy the Dog to fetch the stick.\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit1/huggy.jpg\" alt=\"Huggy\"/>\n",
        "\n",
        "## Keep learning, stay awesome 🤗"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [
        "QAN7B0_HCVZC",
        "BqPKw3jt_pG5"
      ],
      "private_outputs": true,
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": "3.9.7"
    },
    "vscode": {
      "interpreter": {
        "hash": "ed7f8024e43d3b8f5ca3c5e1a8151ab4d136b3ecee1e3fd59e0766ccc55e1b10"
      }
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}