bguan's lunar lander model #2 using PPO trained for 500K timesteps
Browse files- README.md +1 -1
- bguan_ppo_lunarlander2.zip +3 -0
- bguan_ppo_lunarlander2/_stable_baselines3_version +1 -0
- bguan_ppo_lunarlander2/data +94 -0
- bguan_ppo_lunarlander2/policy.optimizer.pth +3 -0
- bguan_ppo_lunarlander2/policy.pth +3 -0
- bguan_ppo_lunarlander2/pytorch_variables.pth +3 -0
- bguan_ppo_lunarlander2/system_info.txt +7 -0
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 218.48 +/- 23.54
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
bguan_ppo_lunarlander2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa5208f643b66b52517edb09ce297993252ae8e2afbe63be9ec0404645d23e44
|
3 |
+
size 144024
|
bguan_ppo_lunarlander2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
bguan_ppo_lunarlander2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3b71a5dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3b71a5e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3b71a5ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3b71a5f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe3b7129050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe3b71290e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3b7129170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe3b7129200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3b7129290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3b7129320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3b71293b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe3b7174a20>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652055111.0983326,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICsVL1cZzu63RVfvBvIZ7zUptw7vO9GPQAAgD8AAIA/Jpi9PUgHobodC8W68S+vtXL83DhVK+M5AACAPwAAgD8zL+29nf5gPlEJIr0VGTy+NlT9u6p+dz0AAAAAAAAAAA1+uj36XR8/uCp8PTW2or7H13w9LQjUPQAAAAAAAAAA+qYmvq63mTkiOJu6smnMNmogC7y6wrU5AACAPwAAgD/zT7w9txwfP1o0WL3H9aC+CqfeO28/R70AAAAAAAAAAADpJr2PEjq69ZZYujdgTrUA9Q877mCAOQAAgD8AAIA/gAmdPUg7l7rtyDW6vCcwtYEG4TrVSFI5AACAPwAAgD8WeZ8+F/NaP9YYqz7m0c++ssqcPvNdLT4AAAAAAAAAAOa+OT7kRoE//t8dPhLWxr7d0M0+gZ8IPQAAAAAAAAAAZhEfvQkUQD9q7Rq9KnV2vq7oszxDLaO9AAAAAAAAAABm2Bm87LGbuWY1uDtpwDk41GDyuuFAiLoAAIA/AACAP1r/fr5FNmA/9iP0vebozr5VvV6+6NUGPgAAAAAAAAAAzeoBvSk8ULq6uQe6MFoGtlIBFbv13hs5AACAPwAAgD8Aji89n620u+CYFzw1XnA8e5QdvYpYTT0AAIA/AACAP2aF4Lz2vHa6Ct5OOy61YTh+iDy7MoP4uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpZ4FobwlSkCUhpRSlIwBbJRL7owBdJRHQHoYF2aDwph1fZQoaAZoCWgPQwiwWMNF7vFcQJSGlFKUaBVN6ANoFkdAehwYeT3Zf3V9lChoBmgJaA9DCJZ7gVmhNDFAlIaUUpRoFU0BAWgWR0B6MUHjZL7GdX2UKGgGaAloD0MIDOpb5vTbYECUhpRSlGgVTegDaBZHQHo/PdEb5uZ1fZQoaAZoCWgPQwjYKOs3E8JdQJSGlFKUaBVN6ANoFkdAekRmdy1eB3V9lChoBmgJaA9DCO9VKxN+jWBAlIaUUpRoFU3oA2gWR0B6RgpI+W4WdX2UKGgGaAloD0MIcM6I0l4RYUCUhpRSlGgVTegDaBZHQHplQ+t8uz11fZQoaAZoCWgPQwh4KuCe5xJhQJSGlFKUaBVN6ANoFkdAemrlJYkmhXV9lChoBmgJaA9DCIm2Y+ouB2FAlIaUUpRoFU3oA2gWR0B6dHPrv9cbdX2UKGgGaAloD0MIoOHNGrwHPkCUhpRSlGgVTQgBaBZHQHqBhf4REnd1fZQoaAZoCWgPQwizzvi+uNgxQJSGlFKUaBVL4mgWR0B6nNJUYKpldX2UKGgGaAloD0MIWksBaf8lZECUhpRSlGgVTegDaBZHQHqhf5P/JeV1fZQoaAZoCWgPQwje/8cJE8NiQJSGlFKUaBVN6ANoFkdAeqmDBMzuW3V9lChoBmgJaA9DCJ92+Guyr15AlIaUUpRoFU3oA2gWR0B6r5+vyLAIdX2UKGgGaAloD0MIW5caoZ/ZJcCUhpRSlGgVTQUBaBZHQHq1ULMLWqd1fZQoaAZoCWgPQwh1P6cgP4NfQJSGlFKUaBVN6ANoFkdAerwMqBmPHXV9lChoBmgJaA9DCN5YUBgU+GNAlIaUUpRoFU3oA2gWR0B60pTvRZ2ZdX2UKGgGaAloD0MIM8SxLm7lQ0CUhpRSlGgVS9loFkdAetOy6cy31HV9lChoBmgJaA9DCAmocASphFpAlIaUUpRoFU3oA2gWR0B69TOPeYUndX2UKGgGaAloD0MICHJQwkw+Y0CUhpRSlGgVTegDaBZHQHtEWFajesR1fZQoaAZoCWgPQwhTBg5o6SFmQJSGlFKUaBVN6ANoFkdAe0ihRZU1h3V9lChoBmgJaA9DCPXVVYHaKGFAlIaUUpRoFU3oA2gWR0B7TR3Ux20RdX2UKGgGaAloD0MItf6WAPwzEsCUhpRSlGgVTQUBaBZHQHtZi3Td+G51fZQoaAZoCWgPQwiyhLUxdtVbQJSGlFKUaBVN6ANoFkdAe2LavicXnHV9lChoBmgJaA9DCKpE2VvKxF5AlIaUUpRoFU3oA2gWR0B7cPIS13MZdX2UKGgGaAloD0MI8nnFU48bYkCUhpRSlGgVTegDaBZHQHt3uAd4mkZ1fZQoaAZoCWgPQwir0asBSopjQJSGlFKUaBVN6ANoFkdAe5yMxGlQ/HV9lChoBmgJaA9DCIjYYOEk2mJAlIaUUpRoFU3oA2gWR0B7s/lJYkmhdX2UKGgGaAloD0MITUwXYvUnKkCUhpRSlGgVS8JoFkdAe8zjopx3mnV9lChoBmgJaA9DCJSilXuB3mJAlIaUUpRoFU3oA2gWR0B7zyZH/cWTdX2UKGgGaAloD0MILV4sDJEDYkCUhpRSlGgVTegDaBZHQHvboiC8OCp1fZQoaAZoCWgPQwh0CvKzkeJiQJSGlFKUaBVN6ANoFkdAe+FT5ftx/HV9lChoBmgJaA9DCAcLJ2n+E2BAlIaUUpRoFU3oA2gWR0B75qQ2dd3TdX2UKGgGaAloD0MI6StIMxZVLMCUhpRSlGgVS+BoFkdAe+qBoVVPvnV9lChoBmgJaA9DCNUl4xhJ+2FAlIaUUpRoFU3oA2gWR0B77Nhqj8DTdX2UKGgGaAloD0MIB7R0Bdu4OkCUhpRSlGgVS+ZoFkdAe/4i35N47nV9lChoBmgJaA9DCHkCYadYYV9AlIaUUpRoFU3oA2gWR0B7/7FZPl+3dX2UKGgGaAloD0MIUWnEzD45QUCUhpRSlGgVS9poFkdAfAusgMc6vXV9lChoBmgJaA9DCOwYV1wcG0tAlIaUUpRoFUvRaBZHQHwSb3PAwf11fZQoaAZoCWgPQwgNG2X9ZvtaQJSGlFKUaBVN6ANoFkdAfB1f+CK77XV9lChoBmgJaA9DCGfttgvNyFxAlIaUUpRoFU3oA2gWR0B8IfyGzru6dX2UKGgGaAloD0MIgVoMHiYDY0CUhpRSlGgVTegDaBZHQHwluirT6SF1fZQoaAZoCWgPQwgz3eukvlBZQJSGlFKUaBVN6ANoFkdAfHOr92ovSXV9lChoBmgJaA9DCNLI5xVPY2VAlIaUUpRoFU3oA2gWR0B8f60Sh8IBdX2UKGgGaAloD0MIC5xsA/e9YECUhpRSlGgVTegDaBZHQHyIuYtxuKp1fZQoaAZoCWgPQwjzBMJOsbZBQJSGlFKUaBVL8mgWR0B8jqrksBhhdX2UKGgGaAloD0MITDj0Fg+ZY0CUhpRSlGgVTegDaBZHQHyW+SGJvYR1fZQoaAZoCWgPQwgnS633G4hjQJSGlFKUaBVN6ANoFkdAfJ3HcUM5O3V9lChoBmgJaA9DCJlGk4sxCCVAlIaUUpRoFUvTaBZHQHy5X++/QBx1fZQoaAZoCWgPQwjE6/oFu61DQJSGlFKUaBVL82gWR0B8/jN9ph4MdX2UKGgGaAloD0MIDR07qMTFYUCUhpRSlGgVTegDaBZHQH0ANGmUGFB1fZQoaAZoCWgPQwidnKG4425jQJSGlFKUaBVN6ANoFkdAfQ2lwtJ4B3V9lChoBmgJaA9DCG1zY3pCI2NAlIaUUpRoFU3oA2gWR0B9GkxWT5fudX2UKGgGaAloD0MI9bwbCwo2YkCUhpRSlGgVTegDaBZHQH0huBxxT851fZQoaAZoCWgPQwie6pCb4V5QQJSGlFKUaBVLxGgWR0B9MonAqNIcdX2UKGgGaAloD0MIpcACmDIMRUCUhpRSlGgVS9doFkdAfTWItDlYEHV9lChoBmgJaA9DCMcqpWd6l0VAlIaUUpRoFUuhaBZHQH02B2r4nF51fZQoaAZoCWgPQwjDnnb4a55eQJSGlFKUaBVN6ANoFkdAfTik56t1ZHV9lChoBmgJaA9DCAMn28AdR2JAlIaUUpRoFU3oA2gWR0B9OnACW/rTdX2UKGgGaAloD0MIhIHn3kOvYkCUhpRSlGgVTegDaBZHQH1HH05EMLF1fZQoaAZoCWgPQwhNSkG3l3pDQJSGlFKUaBVL/WgWR0B9UrMbFS88dX2UKGgGaAloD0MISzlf7L1HXUCUhpRSlGgVTegDaBZHQH1YGm+Cbtt1fZQoaAZoCWgPQwjus8pMaalgQJSGlFKUaBVN6ANoFkdAfVyw++ueSXV9lChoBmgJaA9DCH/5ZMXwQ2FAlIaUUpRoFU3oA2gWR0B9YEjPfKp2dX2UKGgGaAloD0MIy2jk84peYUCUhpRSlGgVTegDaBZHQH1kAnc+JP91fZQoaAZoCWgPQwg3qWis/QU8QJSGlFKUaBVL2mgWR0B9ZLr/sE7odX2UKGgGaAloD0MIeSCySJO0ZECUhpRSlGgVTegDaBZHQH25jCpFTeh1fZQoaAZoCWgPQwjAJmvUw3hiQJSGlFKUaBVN6ANoFkdAfcZZOSGJvnV9lChoBmgJaA9DCKn7AKQ2ol1AlIaUUpRoFU3oA2gWR0B9zXkZJkGzdX2UKGgGaAloD0MIBK4rZgTwZECUhpRSlGgVTegDaBZHQH3T4YrJ8v51fZQoaAZoCWgPQwgYITzaOMxLQJSGlFKUaBVLw2gWR0B97tUEPlMidX2UKGgGaAloD0MIsacd/hr9YUCUhpRSlGgVTegDaBZHQH5M52ECeVd1fZQoaAZoCWgPQwiDvvT255NiQJSGlFKUaBVN6ANoFkdAfl9JBPbfxnV9lChoBmgJaA9DCMRdvYoMymNAlIaUUpRoFU3oA2gWR0B+Yo5/9YOldX2UKGgGaAloD0MIblLRWHsYYUCUhpRSlGgVTegDaBZHQH5jFVo6CDp1fZQoaAZoCWgPQwjjpgaazzxcQJSGlFKUaBVN6ANoFkdAfmeyDqW1MXV9lChoBmgJaA9DCB3nNuFeaVlAlIaUUpRoFU3oA2gWR0B+dlwVCXyBdX2UKGgGaAloD0MILqnaboIDXUCUhpRSlGgVTegDaBZHQH6Dx8UmD151fZQoaAZoCWgPQwgy/+ibtKBjQJSGlFKUaBVN6ANoFkdAfolSOinHenV9lChoBmgJaA9DCLL1DOGYPV9AlIaUUpRoFU3oA2gWR0B+jcfzSThYdX2UKGgGaAloD0MI8RDGT+NWXkCUhpRSlGgVTegDaBZHQH6Rbo0Q9Rt1fZQoaAZoCWgPQwj9Fp0stXhhQJSGlFKUaBVN6ANoFkdAfpUFtsN2DHV9lChoBmgJaA9DCLPttDUi311AlIaUUpRoFU3oA2gWR0B+lbvAoG6gdX2UKGgGaAloD0MISKRt/AniZECUhpRSlGgVTegDaBZHQH7o3eaa1Cx1fZQoaAZoCWgPQwgnEeFfBPNmQJSGlFKUaBVN6ANoFkdAfv1Ltu1nd3V9lChoBmgJaA9DCC3OGOYEjmVAlIaUUpRoFU3oA2gWR0B/A4tRNyo5dX2UKGgGaAloD0MIfnA+dSxcYUCUhpRSlGgVTegDaBZHQH8ezDn/1g91fZQoaAZoCWgPQwgcs+xJYGMyQJSGlFKUaBVL8mgWR0B/XeWIGhVVdX2UKGgGaAloD0MI3UPC9/6SZkCUhpRSlGgVTegDaBZHQH+AT2OAAhl1fZQoaAZoCWgPQwg+srlqnhFWQJSGlFKUaBVN6ANoFkdAf5NnMMZxaXV9lChoBmgJaA9DCFvtYS8U+WVAlIaUUpRoFU3oA2gWR0B/ls3aSLZSdX2UKGgGaAloD0MI3LjF/FzzY0CUhpRSlGgVTegDaBZHQH+XU/r0J4V1fZQoaAZoCWgPQwjCTNu/sh5eQJSGlFKUaBVN6ANoFkdAf5v2phnanXV9lChoBmgJaA9DCKp/EMmQKWFAlIaUUpRoFU3oA2gWR0B/qs0ALiMpdX2UKGgGaAloD0MIEynN5vG7Z0CUhpRSlGgVTegDaBZHQH+488DB/I91fZQoaAZoCWgPQwhlNsgkI1NiQJSGlFKUaBVN6ANoFkdAf78iUxEfDHV9lChoBmgJaA9DCKZ9c391n2BAlIaUUpRoFU3oA2gWR0B/xD2OAAhjdX2UKGgGaAloD0MID+1jBb8kX0CUhpRSlGgVTegDaBZHQH/IdM495hV1fZQoaAZoCWgPQwiflEkNbVtmQJSGlFKUaBVN6ANoFkdAf8zC6pYLcHV9lChoBmgJaA9DCH8XtmYr71pAlIaUUpRoFU3oA2gWR0B/zaqABkqddWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
bguan_ppo_lunarlander2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1410f06cc8d49a818431ff48baa31b688ae44e22a879fe3e1f0a6a99f46c020c
|
3 |
+
size 84829
|
bguan_ppo_lunarlander2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e05086516a6f58c1fb9cba66190704f816aa3fd44cc9558b9ad922e00b52e5f5
|
3 |
+
size 43201
|
bguan_ppo_lunarlander2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
bguan_ppo_lunarlander2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21f0851170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21f0851200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21f0851290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21f0851320>", "_build": "<function ActorCriticPolicy._build at 0x7f21f08513b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f21f0851440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21f08514d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21f0851560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21f08515f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21f0851680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21f0851710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21f081ab70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651713377.0694685, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAArvT0pQGe6W0nTOklGxzX4WMQ5Ld/zuQAAgD8AAIA/UAbJPrdfKj/xrhU+74qRvoGU+z3cJki+AAAAAAAAAABmMbk+jtiHPw36oz610ue+ttpWPjmuMr4AAAAAAAAAAENhjL6XW1c/ZlKyvb+Mmr6JHDu9GaRLPgAAAAAAAAAAcxFNPkkJMj9P4DI+VpCCvuaY8jt82iE+AAAAAAAAAAAzU4y8e+abuqd9qLpNau60Ec7gujrCwDkAAIA/AACAP5o80jyFA+q5AqCjuk2ZsjTexea7apXBOQAAgD8AAIA/AAhYO8MZT7rNgvG6X1dotuqnozq4zQs6AACAPwAAgD/N+Ym+uyLyvM/xJbudRUO51n1VPu0KbzoAAIA/AACAP4DEaT4fo7I8m5cNOz4rlDlHEUQ+yek3ugAAgD8AAIA/zV9VPa6thLrM+Bg69EhGNmgRcDmcGTK5AACAPwAAgD8lFp6+2EKVP6KFnr3S6I++e/Fqvhm6Gj4AAAAAAAAAAL1MUL625we8vmoRvP0BsbkWMXE9qiCUOgAAgD8AAIA/WvivPXvq8bqGRwm7jts9unz6+zumgUk7AACAPwAAAABzp4I+19lqPJNTljysLz86swD8PWt2UTsAAIA/AACAP4ChlT1x/QO5yBfVurBLDzi1uiK7Oo5qOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAtaqXRNEQ0CUhpRSlIwBbJRLuYwBdJRHQIbbvkcS5Ah1fZQoaAZoCWgPQwhwehfvx2NWQJSGlFKUaBVN6ANoFkdAhuBG8VYZEXV9lChoBmgJaA9DCM+9h0uOflhAlIaUUpRoFU3oA2gWR0CG69LvCuU2dX2UKGgGaAloD0MIO6xwy0cQX0CUhpRSlGgVTegDaBZHQIb5RiZv1lJ1fZQoaAZoCWgPQwiojH+f8WFiQJSGlFKUaBVN6ANoFkdAhvnE/SpiqnV9lChoBmgJaA9DCPZFQlvOwlBAlIaUUpRoFU3oA2gWR0CG+hk6tDD1dX2UKGgGaAloD0MIzM8NTdnyUUCUhpRSlGgVTegDaBZHQIc9dvn8sMB1fZQoaAZoCWgPQwhmEYqtoOJUQJSGlFKUaBVN6ANoFkdAh0lhLGrCFnV9lChoBmgJaA9DCGSxTSoaUltAlIaUUpRoFU3oA2gWR0CHVSc94eLfdX2UKGgGaAloD0MI2SQ/4lf/XkCUhpRSlGgVTegDaBZHQIdZig/Tspp1fZQoaAZoCWgPQwhJTbuY5g5jQJSGlFKUaBVN6ANoFkdAh2tRNh3JP3V9lChoBmgJaA9DCLCryVNWAUTAlIaUUpRoFUvmaBZHQIdsbASFoL51fZQoaAZoCWgPQwj7yRgfZi1dQJSGlFKUaBVN6ANoFkdAh3e/LcKw6nV9lChoBmgJaA9DCLrA5bFmiD1AlIaUUpRoFUu/aBZHQId3ybc45tF1fZQoaAZoCWgPQwipT3KHTdhDwJSGlFKUaBVLuWgWR0CHiMMefZmJdX2UKGgGaAloD0MIT7LV5ZQMX0CUhpRSlGgVTegDaBZHQIeLZUHY6GR1fZQoaAZoCWgPQwhWfa62Ys9iQJSGlFKUaBVN6ANoFkdAh4zu+AVfu3V9lChoBmgJaA9DCGzOwTOhYThAlIaUUpRoFUvdaBZHQIecID7qIJt1fZQoaAZoCWgPQwhnR6rv/L9hQJSGlFKUaBVN6ANoFkdAh6eq2jO9nXV9lChoBmgJaA9DCOVgNgGGfShAlIaUUpRoFUvjaBZHQIe0eCVbA1x1fZQoaAZoCWgPQwgPRYE+kfpUQJSGlFKUaBVN6ANoFkdAh7a4cvM8o3V9lChoBmgJaA9DCMufbwuWDlZAlIaUUpRoFU3oA2gWR0CHuwn/DLr5dX2UKGgGaAloD0MIeeV620whWECUhpRSlGgVTegDaBZHQIe/Iu27Wd51fZQoaAZoCWgPQwhhinJp/HdTQJSGlFKUaBVN6ANoFkdAh8l38wYcenV9lChoBmgJaA9DCASSsG8nX0tAlIaUUpRoFU3oA2gWR0CH1eRlHz6KdX2UKGgGaAloD0MIj1Tf+UWXXUCUhpRSlGgVTegDaBZHQIfWX/T9bX91fZQoaAZoCWgPQwj0+Sgjrv1kQJSGlFKUaBVN6ANoFkdAh9asUh3aBnV9lChoBmgJaA9DCO5fWWlSSWBAlIaUUpRoFU3oA2gWR0CH2/lxwQ18dX2UKGgGaAloD0MIos9HGXGRSECUhpRSlGgVTegDaBZHQIg38Ouq3mV1fZQoaAZoCWgPQwiYNbHAV3w1wJSGlFKUaBVNFQFoFkdAiEOytmtheHV9lChoBmgJaA9DCCyDaoMTNFRAlIaUUpRoFU3oA2gWR0CIUth60IC2dX2UKGgGaAloD0MICHJQwkxOYUCUhpRSlGgVTegDaBZHQIhfKa7VawF1fZQoaAZoCWgPQwht4uR+B8BiQJSGlFKUaBVN6ANoFkdAiHLmLk0aZXV9lChoBmgJaA9DCHnm5bD701lAlIaUUpRoFU3oA2gWR0CIea/X5FgEdX2UKGgGaAloD0MIzv5AuW2TWECUhpRSlGgVTegDaBZHQIiJ2BvrGBF1fZQoaAZoCWgPQwgT1zGuuBxAQJSGlFKUaBVN6ANoFkdAiJVvQF9roHV9lChoBmgJaA9DCDnx1Y7ipWJAlIaUUpRoFU3oA2gWR0CIojnLaEi/dX2UKGgGaAloD0MIkV8/xIalYUCUhpRSlGgVTegDaBZHQIiknB7/n4h1fZQoaAZoCWgPQwj4+8VsySZgQJSGlFKUaBVN6ANoFkdAiKlPMr3CbnV9lChoBmgJaA9DCJcaoZ+pk0TAlIaUUpRoFU0eAWgWR0CIqcPXCj1xdX2UKGgGaAloD0MIWOIBZVN7XECUhpRSlGgVTegDaBZHQIitfFrEcbR1fZQoaAZoCWgPQwh/F7ZmK8ZZQJSGlFKUaBVN6ANoFkdAiLhuoYNy53V9lChoBmgJaA9DCFTDfk+soxbAlIaUUpRoFUvVaBZHQIi5yp1ie/Z1fZQoaAZoCWgPQwj5LTpZatxZQJSGlFKUaBVN6ANoFkdAiMTghB7eEnV9lChoBmgJaA9DCBTObi2Tb2BAlIaUUpRoFU3oA2gWR0CIxVri2lVMdX2UKGgGaAloD0MIxvgwe9m/WECUhpRSlGgVTegDaBZHQIjLWACnxax1fZQoaAZoCWgPQwi22sNeKKxAQJSGlFKUaBVNGQFoFkdAiM4UFr2xp3V9lChoBmgJaA9DCGSWPQlsWjjAlIaUUpRoFUvAaBZHQIkU18zAN5N1fZQoaAZoCWgPQwhJgQUwZYRdQJSGlFKUaBVN6ANoFkdAiSYdsJpnH3V9lChoBmgJaA9DCFpkO9/PwWBAlIaUUpRoFU3oA2gWR0CJM1fNzKcNdX2UKGgGaAloD0MISPyKNVwyYECUhpRSlGgVTegDaBZHQIlEda6jFhp1fZQoaAZoCWgPQwiYwK27ea46wJSGlFKUaBVNAAFoFkdAiUVoOpbUw3V9lChoBmgJaA9DCO23dqIkA2BAlIaUUpRoFU3oA2gWR0CJURlkH2RJdX2UKGgGaAloD0MIoWZIFcUlXkCUhpRSlGgVTegDaBZHQIlosrVe8f51fZQoaAZoCWgPQwh3nnjOFppaQJSGlFKUaBVN6ANoFkdAiXhSCe2/jHV9lChoBmgJaA9DCBxeEJGa/lZAlIaUUpRoFU3oA2gWR0CJklbC79Q5dX2UKGgGaAloD0MIscBXdOs/WkCUhpRSlGgVTegDaBZHQImXamEXcg11fZQoaAZoCWgPQwioxeBh2s5bQJSGlFKUaBVN6ANoFkdAiZfyuyNXHXV9lChoBmgJaA9DCFc9YB6yNWRAlIaUUpRoFU2XAWgWR0CJmhF+d9UkdX2UKGgGaAloD0MI/kP67etIVUCUhpRSlGgVTegDaBZHQImbmzWwu/V1fZQoaAZoCWgPQwhQ4J18epBiQJSGlFKUaBVN6ANoFkdAiadwSSNfgXV9lChoBmgJaA9DCLoyqDY4oVdAlIaUUpRoFU3oA2gWR0CJscagmJFcdX2UKGgGaAloD0MIG9mVlpG0YkCUhpRSlGgVTegDaBZHQImyNnVXmvJ1fZQoaAZoCWgPQwixNPCjGlJgQJSGlFKUaBVN6ANoFkdAibfbeMyaeHV9lChoBmgJaA9DCF6dY0D22VRAlIaUUpRoFU3oA2gWR0CJukDK5kLAdX2UKGgGaAloD0MIiDB+GvfmHcCUhpRSlGgVS+1oFkdAigUat9x6wHV9lChoBmgJaA9DCDdStkjaNVpAlIaUUpRoFU3oA2gWR0CKDCAo5PuYdX2UKGgGaAloD0MIQL6ECg5vGkCUhpRSlGgVS/loFkdAihJFz2exwHV9lChoBmgJaA9DCOPdkbFaEWFAlIaUUpRoFU3oA2gWR0CKFrztkWhzdX2UKGgGaAloD0MIxmzJqggjbUCUhpRSlGgVTe4BaBZHQIobtSjxkNF1fZQoaAZoCWgPQwjlCu9yke1lQJSGlFKUaBVN6ANoFkdAiiJi17Y023V9lChoBmgJaA9DCD4+ITvvJGNAlIaUUpRoFU3oA2gWR0CKIx4TsY2sdX2UKGgGaAloD0MI/dmPFBGyZkCUhpRSlGgVTYoBaBZHQIom+LpA2Q51fZQoaAZoCWgPQwhfmiLAaVVgQJSGlFKUaBVN6ANoFkdAikDLVFx4p3V9lChoBmgJaA9DCF+Zt+o65FRAlIaUUpRoFU3oA2gWR0CKUCtnwob5dX2UKGgGaAloD0MIMpHSbB7UWUCUhpRSlGgVTegDaBZHQIprarR0EHN1fZQoaAZoCWgPQwjPSlrxDSNZQJSGlFKUaBVN6ANoFkdAinEuO0b963V9lChoBmgJaA9DCHYWvVMBpWBAlIaUUpRoFU3oA2gWR0CKc6SIP9UCdX2UKGgGaAloD0MI6gWf5uRvYUCUhpRSlGgVTegDaBZHQIp1YKOT7l91fZQoaAZoCWgPQwicpPljWjZWQJSGlFKUaBVN6ANoFkdAipeBVU+9rXV9lChoBmgJaA9DCDsBTYQNqFtAlIaUUpRoFU3oA2gWR0CKmvF1B+nZdX2UKGgGaAloD0MI46qy74qzYMCUhpRSlGgVTc8CaBZHQIqdxjnV5KR1fZQoaAZoCWgPQwjdC8wKRcVbQJSGlFKUaBVN6ANoFkdAiunkF4cFQnV9lChoBmgJaA9DCN3temkKYWVAlIaUUpRoFU3oA2gWR0CK8dM5fdAPdX2UKGgGaAloD0MI6zh+qDSUYUCUhpRSlGgVTegDaBZHQIr4tM23rlh1fZQoaAZoCWgPQwiVfOwuUIpVQJSGlFKUaBVN6ANoFkdAiv11RDTjN3V9lChoBmgJaA9DCMlXAimxl1dAlIaUUpRoFU3oA2gWR0CLApIKc/dJdX2UKGgGaAloD0MIkx6GVicbYECUhpRSlGgVTegDaBZHQIsJ5NCZ4Od1fZQoaAZoCWgPQwj7IMuCiadhQJSGlFKUaBVN6ANoFkdAiw36VMVUM3V9lChoBmgJaA9DCP0TXKwoP2FAlIaUUpRoFU3oA2gWR0CLKHgeA/cGdX2UKGgGaAloD0MIB33p7c98XECUhpRSlGgVTegDaBZHQIs3q6reZXx1fZQoaAZoCWgPQwhUyJV6FgtSQJSGlFKUaBVN6ANoFkdAi1FUknkT6HV9lChoBmgJaA9DCMIwYMlVW2FAlIaUUpRoFU3oA2gWR0CLVsFTvRZ2dX2UKGgGaAloD0MICi5W1OCDYECUhpRSlGgVTegDaBZHQItZKCJ40Mx1fZQoaAZoCWgPQwjri4S2nENaQJSGlFKUaBVN6ANoFkdAi1rDh99c8nV9lChoBmgJaA9DCCkJibSNH11AlIaUUpRoFU3oA2gWR0CLfEPwuuifdX2UKGgGaAloD0MIthDkoISPT8CUhpRSlGgVS8doFkdAi3zXLV4HHHV9lChoBmgJaA9DCB5Robq5FEbAlIaUUpRoFUvkaBZHQIt947YChex1fZQoaAZoCWgPQwhF8Sprm29YQJSGlFKUaBVN6ANoFkdAi3+ood+5OXV9lChoBmgJaA9DCDGZKhiVd2FAlIaUUpRoFU3oA2gWR0CLglvgm7aqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3b71a5dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3b71a5e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3b71a5ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3b71a5f80>", "_build": "<function ActorCriticPolicy._build at 0x7fe3b7129050>", "forward": "<function ActorCriticPolicy.forward at 0x7fe3b71290e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3b7129170>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3b7129200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3b7129290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3b7129320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3b71293b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe3b7174a20>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652055111.0983326, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICsVL1cZzu63RVfvBvIZ7zUptw7vO9GPQAAgD8AAIA/Jpi9PUgHobodC8W68S+vtXL83DhVK+M5AACAPwAAgD8zL+29nf5gPlEJIr0VGTy+NlT9u6p+dz0AAAAAAAAAAA1+uj36XR8/uCp8PTW2or7H13w9LQjUPQAAAAAAAAAA+qYmvq63mTkiOJu6smnMNmogC7y6wrU5AACAPwAAgD/zT7w9txwfP1o0WL3H9aC+CqfeO28/R70AAAAAAAAAAADpJr2PEjq69ZZYujdgTrUA9Q877mCAOQAAgD8AAIA/gAmdPUg7l7rtyDW6vCcwtYEG4TrVSFI5AACAPwAAgD8WeZ8+F/NaP9YYqz7m0c++ssqcPvNdLT4AAAAAAAAAAOa+OT7kRoE//t8dPhLWxr7d0M0+gZ8IPQAAAAAAAAAAZhEfvQkUQD9q7Rq9KnV2vq7oszxDLaO9AAAAAAAAAABm2Bm87LGbuWY1uDtpwDk41GDyuuFAiLoAAIA/AACAP1r/fr5FNmA/9iP0vebozr5VvV6+6NUGPgAAAAAAAAAAzeoBvSk8ULq6uQe6MFoGtlIBFbv13hs5AACAPwAAgD8Aji89n620u+CYFzw1XnA8e5QdvYpYTT0AAIA/AACAP2aF4Lz2vHa6Ct5OOy61YTh+iDy7MoP4uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpZ4FobwlSkCUhpRSlIwBbJRL7owBdJRHQHoYF2aDwph1fZQoaAZoCWgPQwiwWMNF7vFcQJSGlFKUaBVN6ANoFkdAehwYeT3Zf3V9lChoBmgJaA9DCJZ7gVmhNDFAlIaUUpRoFU0BAWgWR0B6MUHjZL7GdX2UKGgGaAloD0MIDOpb5vTbYECUhpRSlGgVTegDaBZHQHo/PdEb5uZ1fZQoaAZoCWgPQwjYKOs3E8JdQJSGlFKUaBVN6ANoFkdAekRmdy1eB3V9lChoBmgJaA9DCO9VKxN+jWBAlIaUUpRoFU3oA2gWR0B6RgpI+W4WdX2UKGgGaAloD0MIcM6I0l4RYUCUhpRSlGgVTegDaBZHQHplQ+t8uz11fZQoaAZoCWgPQwh4KuCe5xJhQJSGlFKUaBVN6ANoFkdAemrlJYkmhXV9lChoBmgJaA9DCIm2Y+ouB2FAlIaUUpRoFU3oA2gWR0B6dHPrv9cbdX2UKGgGaAloD0MIoOHNGrwHPkCUhpRSlGgVTQgBaBZHQHqBhf4REnd1fZQoaAZoCWgPQwizzvi+uNgxQJSGlFKUaBVL4mgWR0B6nNJUYKpldX2UKGgGaAloD0MIWksBaf8lZECUhpRSlGgVTegDaBZHQHqhf5P/JeV1fZQoaAZoCWgPQwje/8cJE8NiQJSGlFKUaBVN6ANoFkdAeqmDBMzuW3V9lChoBmgJaA9DCJ92+Guyr15AlIaUUpRoFU3oA2gWR0B6r5+vyLAIdX2UKGgGaAloD0MIW5caoZ/ZJcCUhpRSlGgVTQUBaBZHQHq1ULMLWqd1fZQoaAZoCWgPQwh1P6cgP4NfQJSGlFKUaBVN6ANoFkdAerwMqBmPHXV9lChoBmgJaA9DCN5YUBgU+GNAlIaUUpRoFU3oA2gWR0B60pTvRZ2ZdX2UKGgGaAloD0MIM8SxLm7lQ0CUhpRSlGgVS9loFkdAetOy6cy31HV9lChoBmgJaA9DCAmocASphFpAlIaUUpRoFU3oA2gWR0B69TOPeYUndX2UKGgGaAloD0MICHJQwkw+Y0CUhpRSlGgVTegDaBZHQHtEWFajesR1fZQoaAZoCWgPQwhTBg5o6SFmQJSGlFKUaBVN6ANoFkdAe0ihRZU1h3V9lChoBmgJaA9DCPXVVYHaKGFAlIaUUpRoFU3oA2gWR0B7TR3Ux20RdX2UKGgGaAloD0MItf6WAPwzEsCUhpRSlGgVTQUBaBZHQHtZi3Td+G51fZQoaAZoCWgPQwiyhLUxdtVbQJSGlFKUaBVN6ANoFkdAe2LavicXnHV9lChoBmgJaA9DCKpE2VvKxF5AlIaUUpRoFU3oA2gWR0B7cPIS13MZdX2UKGgGaAloD0MI8nnFU48bYkCUhpRSlGgVTegDaBZHQHt3uAd4mkZ1fZQoaAZoCWgPQwir0asBSopjQJSGlFKUaBVN6ANoFkdAe5yMxGlQ/HV9lChoBmgJaA9DCIjYYOEk2mJAlIaUUpRoFU3oA2gWR0B7s/lJYkmhdX2UKGgGaAloD0MITUwXYvUnKkCUhpRSlGgVS8JoFkdAe8zjopx3mnV9lChoBmgJaA9DCJSilXuB3mJAlIaUUpRoFU3oA2gWR0B7zyZH/cWTdX2UKGgGaAloD0MILV4sDJEDYkCUhpRSlGgVTegDaBZHQHvboiC8OCp1fZQoaAZoCWgPQwh0CvKzkeJiQJSGlFKUaBVN6ANoFkdAe+FT5ftx/HV9lChoBmgJaA9DCAcLJ2n+E2BAlIaUUpRoFU3oA2gWR0B75qQ2dd3TdX2UKGgGaAloD0MI6StIMxZVLMCUhpRSlGgVS+BoFkdAe+qBoVVPvnV9lChoBmgJaA9DCNUl4xhJ+2FAlIaUUpRoFU3oA2gWR0B77Nhqj8DTdX2UKGgGaAloD0MIB7R0Bdu4OkCUhpRSlGgVS+ZoFkdAe/4i35N47nV9lChoBmgJaA9DCHkCYadYYV9AlIaUUpRoFU3oA2gWR0B7/7FZPl+3dX2UKGgGaAloD0MIUWnEzD45QUCUhpRSlGgVS9poFkdAfAusgMc6vXV9lChoBmgJaA9DCOwYV1wcG0tAlIaUUpRoFUvRaBZHQHwSb3PAwf11fZQoaAZoCWgPQwgNG2X9ZvtaQJSGlFKUaBVN6ANoFkdAfB1f+CK77XV9lChoBmgJaA9DCGfttgvNyFxAlIaUUpRoFU3oA2gWR0B8IfyGzru6dX2UKGgGaAloD0MIgVoMHiYDY0CUhpRSlGgVTegDaBZHQHwluirT6SF1fZQoaAZoCWgPQwgz3eukvlBZQJSGlFKUaBVN6ANoFkdAfHOr92ovSXV9lChoBmgJaA9DCNLI5xVPY2VAlIaUUpRoFU3oA2gWR0B8f60Sh8IBdX2UKGgGaAloD0MIC5xsA/e9YECUhpRSlGgVTegDaBZHQHyIuYtxuKp1fZQoaAZoCWgPQwjzBMJOsbZBQJSGlFKUaBVL8mgWR0B8jqrksBhhdX2UKGgGaAloD0MITDj0Fg+ZY0CUhpRSlGgVTegDaBZHQHyW+SGJvYR1fZQoaAZoCWgPQwgnS633G4hjQJSGlFKUaBVN6ANoFkdAfJ3HcUM5O3V9lChoBmgJaA9DCJlGk4sxCCVAlIaUUpRoFUvTaBZHQHy5X++/QBx1fZQoaAZoCWgPQwjE6/oFu61DQJSGlFKUaBVL82gWR0B8/jN9ph4MdX2UKGgGaAloD0MIDR07qMTFYUCUhpRSlGgVTegDaBZHQH0ANGmUGFB1fZQoaAZoCWgPQwidnKG4425jQJSGlFKUaBVN6ANoFkdAfQ2lwtJ4B3V9lChoBmgJaA9DCG1zY3pCI2NAlIaUUpRoFU3oA2gWR0B9GkxWT5fudX2UKGgGaAloD0MI9bwbCwo2YkCUhpRSlGgVTegDaBZHQH0huBxxT851fZQoaAZoCWgPQwie6pCb4V5QQJSGlFKUaBVLxGgWR0B9MonAqNIcdX2UKGgGaAloD0MIpcACmDIMRUCUhpRSlGgVS9doFkdAfTWItDlYEHV9lChoBmgJaA9DCMcqpWd6l0VAlIaUUpRoFUuhaBZHQH02B2r4nF51fZQoaAZoCWgPQwjDnnb4a55eQJSGlFKUaBVN6ANoFkdAfTik56t1ZHV9lChoBmgJaA9DCAMn28AdR2JAlIaUUpRoFU3oA2gWR0B9OnACW/rTdX2UKGgGaAloD0MIhIHn3kOvYkCUhpRSlGgVTegDaBZHQH1HH05EMLF1fZQoaAZoCWgPQwhNSkG3l3pDQJSGlFKUaBVL/WgWR0B9UrMbFS88dX2UKGgGaAloD0MISzlf7L1HXUCUhpRSlGgVTegDaBZHQH1YGm+Cbtt1fZQoaAZoCWgPQwjus8pMaalgQJSGlFKUaBVN6ANoFkdAfVyw++ueSXV9lChoBmgJaA9DCH/5ZMXwQ2FAlIaUUpRoFU3oA2gWR0B9YEjPfKp2dX2UKGgGaAloD0MIy2jk84peYUCUhpRSlGgVTegDaBZHQH1kAnc+JP91fZQoaAZoCWgPQwg3qWis/QU8QJSGlFKUaBVL2mgWR0B9ZLr/sE7odX2UKGgGaAloD0MIeSCySJO0ZECUhpRSlGgVTegDaBZHQH25jCpFTeh1fZQoaAZoCWgPQwjAJmvUw3hiQJSGlFKUaBVN6ANoFkdAfcZZOSGJvnV9lChoBmgJaA9DCKn7AKQ2ol1AlIaUUpRoFU3oA2gWR0B9zXkZJkGzdX2UKGgGaAloD0MIBK4rZgTwZECUhpRSlGgVTegDaBZHQH3T4YrJ8v51fZQoaAZoCWgPQwgYITzaOMxLQJSGlFKUaBVLw2gWR0B97tUEPlMidX2UKGgGaAloD0MIsacd/hr9YUCUhpRSlGgVTegDaBZHQH5M52ECeVd1fZQoaAZoCWgPQwiDvvT255NiQJSGlFKUaBVN6ANoFkdAfl9JBPbfxnV9lChoBmgJaA9DCMRdvYoMymNAlIaUUpRoFU3oA2gWR0B+Yo5/9YOldX2UKGgGaAloD0MIblLRWHsYYUCUhpRSlGgVTegDaBZHQH5jFVo6CDp1fZQoaAZoCWgPQwjjpgaazzxcQJSGlFKUaBVN6ANoFkdAfmeyDqW1MXV9lChoBmgJaA9DCB3nNuFeaVlAlIaUUpRoFU3oA2gWR0B+dlwVCXyBdX2UKGgGaAloD0MILqnaboIDXUCUhpRSlGgVTegDaBZHQH6Dx8UmD151fZQoaAZoCWgPQwgy/+ibtKBjQJSGlFKUaBVN6ANoFkdAfolSOinHenV9lChoBmgJaA9DCLL1DOGYPV9AlIaUUpRoFU3oA2gWR0B+jcfzSThYdX2UKGgGaAloD0MI8RDGT+NWXkCUhpRSlGgVTegDaBZHQH6Rbo0Q9Rt1fZQoaAZoCWgPQwj9Fp0stXhhQJSGlFKUaBVN6ANoFkdAfpUFtsN2DHV9lChoBmgJaA9DCLPttDUi311AlIaUUpRoFU3oA2gWR0B+lbvAoG6gdX2UKGgGaAloD0MISKRt/AniZECUhpRSlGgVTegDaBZHQH7o3eaa1Cx1fZQoaAZoCWgPQwgnEeFfBPNmQJSGlFKUaBVN6ANoFkdAfv1Ltu1nd3V9lChoBmgJaA9DCC3OGOYEjmVAlIaUUpRoFU3oA2gWR0B/A4tRNyo5dX2UKGgGaAloD0MIfnA+dSxcYUCUhpRSlGgVTegDaBZHQH8ezDn/1g91fZQoaAZoCWgPQwgcs+xJYGMyQJSGlFKUaBVL8mgWR0B/XeWIGhVVdX2UKGgGaAloD0MI3UPC9/6SZkCUhpRSlGgVTegDaBZHQH+AT2OAAhl1fZQoaAZoCWgPQwg+srlqnhFWQJSGlFKUaBVN6ANoFkdAf5NnMMZxaXV9lChoBmgJaA9DCFvtYS8U+WVAlIaUUpRoFU3oA2gWR0B/ls3aSLZSdX2UKGgGaAloD0MI3LjF/FzzY0CUhpRSlGgVTegDaBZHQH+XU/r0J4V1fZQoaAZoCWgPQwjCTNu/sh5eQJSGlFKUaBVN6ANoFkdAf5v2phnanXV9lChoBmgJaA9DCKp/EMmQKWFAlIaUUpRoFU3oA2gWR0B/qs0ALiMpdX2UKGgGaAloD0MIEynN5vG7Z0CUhpRSlGgVTegDaBZHQH+488DB/I91fZQoaAZoCWgPQwhlNsgkI1NiQJSGlFKUaBVN6ANoFkdAf78iUxEfDHV9lChoBmgJaA9DCKZ9c391n2BAlIaUUpRoFU3oA2gWR0B/xD2OAAhjdX2UKGgGaAloD0MID+1jBb8kX0CUhpRSlGgVTegDaBZHQH/IdM495hV1fZQoaAZoCWgPQwiflEkNbVtmQJSGlFKUaBVN6ANoFkdAf8zC6pYLcHV9lChoBmgJaA9DCH8XtmYr71pAlIaUUpRoFU3oA2gWR0B/zaqABkqddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68942288e97858cb0952f52623c858c27353067cdf4eb2282c56f3af81a2238a
|
3 |
+
size 234632
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 218.47820877534906, "std_reward": 23.54250514950306, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T00:25:15.736811"}
|