File size: 32,448 Bytes
f876541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:400
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: 'QUESTION #2: What percentage of patients in the study reported
experiencing "chills" and "feverish discomfort"?'
sentences:
- "been proven superior. Annual influenza vaccination is recommended for all people\
\ six months and older who do not have \ncontraindications. ( Am Fam Physician.\
\ 2019; 100(12):751-758. Copyright © 2019 American Academy of Family Physicians.)\n\
BEST PRACTICES IN INFECTIOUS DISEASE \nRecommendations from the Choosing \nWisely\
\ Campaign\nRecommendation Sponsoring organization\nDo not routinely avoid \n\
influenza vaccination in \negg-allergic patients.\nAmerican Academy of Allergy,\
\ \nAsthma, and Immunology\nSource: For more information on the Choosing Wisely\
\ Campaign,"
- 'Review
722 Vol 5 November 2005
accompanied by fever and some subjects have a transient
fall in body temperature during the early stages of
common cold. In a study of 272 patients with sore throat
associated with URTIs, the mean aural temperature was
36·8ºC and around 35% of these patients said they were
suffering from “chills” and “feverish discomfort”.49 The
sensation of chilliness may be unrelated to any change in
skin or body temperature. In a study of human
volunteers, a sensation of chill still develops on
administration of exogenous pyrogen even though the'
- "ered when the results will modify management or when a \npatient with signs or\
\ symptoms of influenza is hospitalized.19 \nTABLE 2\nComplications of Influenza\n\
Cardiovascular 26\nCerebrovascular accidents\nIschemic heart disease\nMyocarditis\n\
Hematologic 26\nHemolytic uremic syndrome\nHemophagocytic syndrome\nThrombotic\
\ thrombocytope -\nnic purpura\nMusculoskeletal 19,26\nMyositis\nRhabdomyolysis\n\
Neurologic 26\nAcute disseminated \nencephalomyelitis\nEncephalitis\nGuillain-Barré\
\ syndrome\nPostinfluenza encephalopathy \n(neurologic symptoms occur -\nring\
\ after resolution but within"
- source_sentence: How do cytokines interact with the body's systems to influence
the hypothalamus and affect body temperature?
sentences:
- 'interleukin 1, interleukin 6, and tumour necrosis factor
alpha, as well as the anti-inflammatory cytokines
interleukin-1 receptor antagonist and interleukin 10
have been investigated for their pyrogenic or antipyretic
action.17 Interleukin 1 and interleukin 6 are believed to
be the most important cytokines that induce fever. 55
Cytokines are believed to cross the blood–brain barrier
or interact with the vagus nerve endings to signal the
temperature control centre of the hypothalamus to
increase the thermal set point.55,56 The hypothalamus
then initiates shivering, constriction of skin blood'
- "mended human dose; possible \nrisk of embryo-fetal toxicity with \ncontinuous\
\ intravenous infusion \nbased on limited animal data\nBaloxavir (Xofluza), \n\
available as oral \ntablets\nNA ($160) Adults and children 12 years \nand older:\
\ \n88 to 174 lb (40 to 79 kg): \nsingle dose of 40 mg \n≥ 175 lb (80 kg):\
\ single dose \nof 80 mg\nTreatment of uncom-\nplicated acute \ninfluenza in\
\ patients \n12 years and older who \nhave been symptom -\natic for no more than\
\ \n48 hours\nContraindicated in people with \na history of hypersensitivity to\
\ \nbaloxavir or any component of the \nproduct"
- "CME This clinical content conforms to AAFP criteria for con-\ntinuing medical\
\ education (CME). See CME Quiz on page 271.\nAuthor disclosure: No relevant\
\ financial affiliations.\nPatient information: Handouts on this topic, written\
\ by the \nauthors of this article, are available at https:// www.aafp.org/\n\
afp/2019/0901/p281-s1.html and https:// www.aafp.org/\nafp/2019/0901/p281-s2.html.\n\
Acute upper respiratory tract infections are extremely common in adults and children,\
\ but only a few safe and effective treat-"
- source_sentence: What are the limitations of using adamantanes (amantadine and rimantadine)
for influenza treatment according to the context?
sentences:
- "December 15, 2019 ◆ Volume 100, Number 12 www.aafp.org/afp American Family Physician\
\ 755\nINFLUENZA\nClinicians caring for high-risk patients can also be consid\
\ -\nered for treatment.28\nFour antiviral drugs have been approved for the treat\
\ -\nment of influenza (Table 4): the NA inhibitors oseltamivir \n(Tamiflu),\
\ zanamivir (Relenza), and peramivir (Rapivab), \nand the cap-dependent endonuclease\
\ inhibitor baloxa -\nvir (Xofluza). 18,37 Any of these agents can be used in\
\ age- \nappropriate, otherwise healthy outpatients with uncom -\nplicated influenza\
\ and no contraindications. 18 Baloxavir is"
- "756 American Family Physician www.aafp.org/afp Volume 100, Number 12 ◆ December\
\ 15, 2019\nINFLUENZA\nthe risk of bronchospasm. 18,28 Adamantanes (amantadine\
\ \nand rimantadine [Flumadine]) are approved for influenza \ntreatment but are\
\ not currently recommended. These med -\nications are not active against influenza\
\ B, and most influ -\nenza A strains have shown adamantane resistance for the\
\ \npast 10 years.18\nThere is no demonstrated benefit to treating patients \n\
with more than one antiviral agent or using higher than \nrecommended dosages.\
\ 28 However, extended treatment"
- "distress syndrome\nDiffuse alveolar \nhemorrhage\nHypoxic respiratory \nfailure\n\
Primary viral pneumonia\nSecondary bacterial \npneumonia\nRenal 26\nAcute kidney\
\ injury \n(e.g., acute tubulo- \ninterstitial nephritis, \nglomerulonephritis,\
\ \nminimal change disease)\nMultiorgan failure\nInformation from references 8,\
\ 19, and 25-27.\nSORT: KEY RECOMMENDATIONS FOR PRACTICE\nClinical recommendation\n\
Evidence \nrating Comments\nAnnual influenza vaccination is recommended for all\
\ people 6 months and older. 15,16 A Reports of expert committees"
- source_sentence: Which symptoms of colds and flu are now better understood due to
new knowledge in molecular biology?
sentences:
- 'mechanisms that generate the familiar symptoms is poor compared with the amount
of knowledge available on the
molecular biology of the viruses involved. New knowledge of the effects of cytokines
in human beings now helps to
explain some of the symptoms of colds and flu that were previously in the realm
of folklore rather than medicine—
eg, fever, anorexia, malaise, chilliness, headache, and muscle aches and pains.
The mechanisms of symptoms of
sore throat, rhinorrhoea, sneezing, nasal congestion, cough, watery eyes, and
sinus pain are discussed, since these'
- 'medicines such as ipratropium. These studies have
demonstrated that nasal secretions in the first 4 days of a
common cold are inhibited by intranasal administration
of ipratropium.25 The nasal discharge also consists of a
protein-rich plasma exudate derived from subepithelial
capillaries,28 which may explain why anticholinergics
only partly inhibit nasal discharge associated with
URTIs.27
The colour of nasal discharge and sputum is often
used as a clinical marker to determine whether or not to
prescribe antibiotics but there is no evidence from the'
- "ing diffuse alveolar hemorrhage in immunocompetent patients: a state-\nof-the-art\
\ review. Lung. 2013; 191(1): 9-18.\n 28. Uyeki TM, Bernstein HH, Bradley JS,\
\ et al. Clinical practice guidelines by \nthe Infectious Diseases Society of\
\ America: 2018 update on diagnosis, \ntreatment, chemoprophylaxis, and institutional\
\ outbreak management \nof seasonal influenza. Clin Infect Dis. 2019; 68(6): 895-902.\n\
\ 29. Ebell MH, Afonso AM, Gonzales R, et al. Development and validation of \n\
a clinical decision rule for the diagnosis of influenza. J Am Board Fam \nMed.\
\ 2012; 25(1): 55-62."
- source_sentence: 'QUESTION #2: How does the sneeze centre in the brainstem coordinate
the actions involved in sneezing?'
sentences:
- "stroke, seizure disorder, dementia)\nAsthma or other chronic pulmonary disease\n\
Chronic kidney disease\nChronic liver disease\nHeart disease (acquired or congenital)\n\
Immunosuppression (e.g., HIV infection, cancer, transplant \nrecipients, use of\
\ immunosuppressive medications)\nLong-term aspirin therapy in patients younger\
\ than 19 years\nMetabolic disorders (acquired [e.g., diabetes mellitus] or \n\
inherited [e.g., mitochondrial disorders])\nMorbid obesity\nSickle cell anemia\
\ and other hemoglobinopathies\nSpecial groups\nAdults 65 years and older\nAmerican\
\ Indians and Alaska Natives"
- 'causes sneezing.23 The trigeminal nerves relay
information to the sneeze centre in the brainstem and
cause reflex activation of motor and parasympathetic
branches of the facial nerve and activate respiratory
muscles. A model of the sneeze reflex is illustrated in
figure 1. The sneeze centre coordinates the inspiratory
and expiratory actions of sneezing via respiratory
muscles, and lacrimation and nasal congestion via
parasympathetic branches of the facial nerve. The eyes
are always closed during sneezing by activation of facial
muscles, indicating a close relation between the'
- 'during experimental rhinovirus infections have not
been able to find any morphological changes in the
nasal epithelium of infected volunteers, apart from a
substantial increase in polymorphonuclear leucocytes
early in the course of the infection.11 The major cell
monitoring the host for the invasion of pathogens is
the macrophage, which has the ability to trigger an
acute phase response when stimulated with
components of viruses or bacteria—eg, viral RNA and
bacterial cell wall components.12 The surface of the
macrophage exhibits toll-like receptors that combine'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.6122448979591837
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8877551020408163
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9387755102040817
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9897959183673469
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6122448979591837
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29591836734693877
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1877551020408163
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09897959183673469
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6122448979591837
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8877551020408163
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9387755102040817
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9897959183673469
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8165441473931409
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7593091998704244
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7600380628441854
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.61
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.86
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.91
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.98
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.61
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2866666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18199999999999997
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09799999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.61
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.86
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.91
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.98
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8056804227184741
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7489960317460317
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7504795482295481
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Gonalb/flucold-ft-v2")
# Run inference
sentences = [
'QUESTION #2: How does the sneeze centre in the brainstem coordinate the actions involved in sneezing?',
'causes sneezing.23 The trigeminal nerves relay\ninformation to the sneeze centre in the brainstem and\ncause reflex activation of motor and parasympathetic\nbranches of the facial nerve and activate respiratory\nmuscles. A model of the sneeze reflex is illustrated in\nfigure 1. The sneeze centre coordinates the inspiratory\nand expiratory actions of sneezing via respiratory\nmuscles, and lacrimation and nasal congestion via\nparasympathetic branches of the facial nerve. The eyes\nare always closed during sneezing by activation of facial\nmuscles, indicating a close relation between the',
'stroke, seizure disorder, dementia)\nAsthma or other chronic pulmonary disease\nChronic kidney disease\nChronic liver disease\nHeart disease (acquired or congenital)\nImmunosuppression (e.g., HIV infection, cancer, transplant \nrecipients, use of immunosuppressive medications)\nLong-term aspirin therapy in patients younger than 19 years\nMetabolic disorders (acquired [e.g., diabetes mellitus] or \ninherited [e.g., mitochondrial disorders])\nMorbid obesity\nSickle cell anemia and other hemoglobinopathies\nSpecial groups\nAdults 65 years and older\nAmerican Indians and Alaska Natives',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6122 |
| cosine_accuracy@3 | 0.8878 |
| cosine_accuracy@5 | 0.9388 |
| cosine_accuracy@10 | 0.9898 |
| cosine_precision@1 | 0.6122 |
| cosine_precision@3 | 0.2959 |
| cosine_precision@5 | 0.1878 |
| cosine_precision@10 | 0.099 |
| cosine_recall@1 | 0.6122 |
| cosine_recall@3 | 0.8878 |
| cosine_recall@5 | 0.9388 |
| cosine_recall@10 | 0.9898 |
| **cosine_ndcg@10** | **0.8165** |
| cosine_mrr@10 | 0.7593 |
| cosine_map@100 | 0.76 |
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.61 |
| cosine_accuracy@3 | 0.86 |
| cosine_accuracy@5 | 0.91 |
| cosine_accuracy@10 | 0.98 |
| cosine_precision@1 | 0.61 |
| cosine_precision@3 | 0.2867 |
| cosine_precision@5 | 0.182 |
| cosine_precision@10 | 0.098 |
| cosine_recall@1 | 0.61 |
| cosine_recall@3 | 0.86 |
| cosine_recall@5 | 0.91 |
| cosine_recall@10 | 0.98 |
| **cosine_ndcg@10** | **0.8057** |
| cosine_mrr@10 | 0.749 |
| cosine_map@100 | 0.7505 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 400 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 400 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 23.07 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 122.33 tokens</li><li>max: 296 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What should individuals with asthma do if they experience flu symptoms?</code> | <code>People with asthma who get flu symptoms should call their health care provider right<br>away. There are antiviral drugs that can treat flu illness and help prevent serious flu<br>complications.<br>About asthma<br>Asthma is a lung disease that is caused by chronic inflammation of the airways. It is one of the most common long-term diseases among<br>children, but adults can have asthma, too. Asthma attacks occur when the lung airways tighten due to inflammation. Asthma attacks can be</code> |
| <code>What causes asthma attacks to occur in individuals with asthma?</code> | <code>People with asthma who get flu symptoms should call their health care provider right<br>away. There are antiviral drugs that can treat flu illness and help prevent serious flu<br>complications.<br>About asthma<br>Asthma is a lung disease that is caused by chronic inflammation of the airways. It is one of the most common long-term diseases among<br>children, but adults can have asthma, too. Asthma attacks occur when the lung airways tighten due to inflammation. Asthma attacks can be</code> |
| <code>QUESTION #1: How long are people with RSV typically contagious?</code> | <code>second birthday. However, repeat infections may occur throughout life.<br>People with RSV are usually contagious for 3 to 8 days and may become contagious a day or two before they start showing signs of illness.<br>However, some infants and people with weakened immune systems can continue to spread the virus for 4 weeks or longer, even after they stop<br>showing symptoms. Children are often exposed to and infected with RSV outside the home, such as in school or childcare centers. They can then<br>transmit the virus to other members of the family.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | cosine_ndcg@10 |
|:------:|:----:|:-------------:|:--------------:|
| 1.0 | 40 | - | 0.8359 |
| 1.25 | 50 | - | 0.8312 |
| 2.0 | 80 | - | 0.8304 |
| 2.5 | 100 | - | 0.8156 |
| 3.0 | 120 | - | 0.8016 |
| 3.75 | 150 | - | 0.7952 |
| 4.0 | 160 | - | 0.7880 |
| 5.0 | 200 | - | 0.8021 |
| 6.0 | 240 | - | 0.8215 |
| 6.25 | 250 | - | 0.8286 |
| 7.0 | 280 | - | 0.8079 |
| 7.5 | 300 | - | 0.8043 |
| 8.0 | 320 | - | 0.8126 |
| 8.75 | 350 | - | 0.8099 |
| 9.0 | 360 | - | 0.8126 |
| 10.0 | 400 | - | 0.8165 |
| 0.6173 | 50 | - | 0.8138 |
| 1.0 | 81 | - | 0.8158 |
| 1.2346 | 100 | - | 0.7932 |
| 1.8519 | 150 | - | 0.7989 |
| 2.0 | 162 | - | 0.7866 |
| 2.4691 | 200 | - | 0.8012 |
| 3.0 | 243 | - | 0.7803 |
| 3.0864 | 250 | - | 0.7969 |
| 3.7037 | 300 | - | 0.8030 |
| 4.0 | 324 | - | 0.7993 |
| 4.3210 | 350 | - | 0.7848 |
| 4.9383 | 400 | - | 0.7852 |
| 5.0 | 405 | - | 0.7814 |
| 5.5556 | 450 | - | 0.7975 |
| 6.0 | 486 | - | 0.7846 |
| 6.1728 | 500 | 0.314 | 0.7925 |
| 6.7901 | 550 | - | 0.7994 |
| 7.0 | 567 | - | 0.8069 |
| 7.4074 | 600 | - | 0.8048 |
| 8.0 | 648 | - | 0.8063 |
| 8.0247 | 650 | - | 0.8062 |
| 8.6420 | 700 | - | 0.7992 |
| 9.0 | 729 | - | 0.8115 |
| 9.2593 | 750 | - | 0.8118 |
| 9.8765 | 800 | - | 0.8057 |
| 10.0 | 810 | - | 0.8057 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |