File size: 31,573 Bytes
ecf317f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:334
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: 'QUESTION #1: What are the potential adverse effects associated
with the use of peramivir?'
sentences:
- "although poultry-to-human and human-to-human trans -\nmission remains relatively\
\ low. Despite low transmissibility, \nthe reported fatality rate is high (approximately\
\ 60%).14\nPrevention\nThe Centers for Disease Control and Prevention’s (CDC’s)\
\ \nAdvisory Committee on Immunization Practices (ACIP) \nand the American Academy\
\ of Family Physicians (AAFP) \nrecommend annual influenza vaccination for all\
\ people six \nmonths and older who do not have contraindications. 15,16 \nVaccination\
\ efforts should target people at increased risk of \ncomplicated or severe influenza\
\ (Table 117-19) and those who \ncare for or live with high-risk individuals,\
\ including health \ncare professionals. 15 Two previous FPM articles provided"
- 'increased sensitivity to pain.60 These cytokines are also
associated with URTIs and may mediate mood changes
associated with these infections.
Anorexia
Anorexia is a common behavioural response to URTIs,
and this response has entered the folklore as advice to
Figure 4: Fever is caused by cytokines released from macrophages and other
immune cells
The cytokines may act on vagal nerve endings or enter the brain to cause a
resetting of the temperature control centre in the hypothalamus. The
hypothalamus causes shivering and constriction of skin blood vessels and also
initiates a sensation of chilliness that is perceived at the level of the cerebral
cortex. IL=interleukin; TNF=tumour necrosis factor.
Vagal
nerves
ShiveringMacrophages'
- "older who have been \nsymptomatic for no \nmore than 48 hours\nContraindicated\
\ in people \nwith serious hypersensitivity or \nanaphylaxis to peramivir or any\
\ \ncomponent of the product\nPotential adverse effects include \ndiarrhea, nausea,\
\ vomiting, and \nneutropenia\nWeigh risks and benefits during \npregnancy; no\
\ human data \navailable; no known risk of \nembryo-fetal toxicity based on \n\
animal data at 8 times the recom -\nmended human dose; possible \nrisk of embryo-fetal\
\ toxicity with \ncontinuous intravenous infusion \nbased on limited animal data\n\
Baloxavir (Xofluza), \navailable as oral \ntablets\nNA ($160) Adults and children\
\ 12 years \nand older: \n88 to 174 lb (40 to 79 kg): \nsingle dose of 40 mg\
\ \n≥ 175 lb (80 kg): single dose \nof 80 mg"
- source_sentence: Why is Influenza A most responsible for causing pandemics?
sentences:
- "on the first day of symptoms, medications containing ibu -\nprofen and pseudoephedrine\
\ may reduce the severity of cold \nsymptoms.35 Antihistamine monotherapy is not\
\ effective \nfor relieving cough.6,23\nIpratropium. Inhaled ipratropium is the\
\ only medication \nthat improves persistent cough related to URI in adults. 24,36\
\ \nTABLE 1\nDifferential Diagnosis for the Common Cold\nDiagnosis\nSymptom \n\
onset Cough Sore throat Fever Rhinorrhea Aches Watery eyes Sneezing\nNasal \n\
congestion Headache\nShortness \nof breath\nAcute \nbronchitis\nGradual Prominent,\
\ per-\nsistent, dry or wet\nCommon None or low \ngrade\nUncommon Mild Common\
\ Uncommon Uncommon Common, mild Common\nAllergic \nrhinitis\nGradual Common,\
\ chronic Possible, especially \non awakening\nNone Common,"
- "Patient information: Handouts on this topic are available \nat https:// family\
\ doctor.org/preventing-the-flu and https:// \nfamily doctor.org/flu-myths.\n\
Influenza is an acute viral respiratory infection that causes significant morbidity\
\ and mortality worldwide. Three types of influ-\nenza cause disease in humans.\
\ Influenza A is the type most responsible for causing pandemics because of its\
\ high susceptibility \nto antigenic variation. Influenza is highly contagious,\
\ and the hallmark of infection is abrupt onset of fever, cough, chills or \n\
sweats, myalgias, and malaise. For most patients in the outpatient setting, the\
\ diagnosis is made clinically, and laboratory con-"
- "www.aafp.org/fpm/2017/0900/p6.html\n 22. Centers for Disease Control and Prevention.\
\ Influenza (flu): immuno -\ngenicity, efficacy, and effectiveness of influenza\
\ vaccines. Updated \nAugust 23, 2018. Accessed January 22, 2019. https:// www.cdc.gov/flu/\n\
professionals/acip/2018-2019/background/immunogenicity.htm\n 23. DiazGranados\
\ CA, Dunning AJ, Kimmel M, et al. Efficacy of high-dose \nversus standard-dose\
\ influenza vaccine in older adults. N Engl J Med. \n2014; 371(7): 635-645.\n\
\ 24. DiazGranados CA, Robertson CA, Talbot HK, et al. Prevention of serious\
\ \nevents in adults 65 years of age or older: a comparison between high-\ndose\
\ and standard-dose inactivated influenza vaccines. Vaccine. 2015; \n33(38):\
\ 4988-4993."
- source_sentence: How does the negative likelihood ratio for digital immunoassays
compare between adults and children for Influenza A?
sentences:
- "17. Erlikh IV, Abraham S, Kondamudi VK. Management of influenza. Am \nFam Physician\
\ . 2010; 82(9): 1087-1095. Accessed September 5, 2019. \nhttps:// www.aafp.org/afp/2010/1101/p1087.html\n\
\ 18. Centers for Disease Control and Prevention. Influenza (flu): for clini\
\ -\ncians: antiviral medication. Updated Decemebr 27, 2018. Accessed \nFebruary\
\ 24, 2019. https:// www.cdc.gov/flu/professionals/antivirals/\nsummary-clinicians.htm\n\
\ 19. Centers for Disease Control and Prevention. Influenza (flu): guide for\
\ \nconsidering influenza testing. Updated March 4, 2019. Accessed Octo -\nber\
\ 5, 2019. https:// www.cdc.gov/flu/professionals/diagnosis/consider-\ninfluenza-testing.htm"
- "TABLE 3\nAccuracy of Point-of-Care Tests for Influenza\nTest\nPositive \nlikelihood\
\ \nratio\nNegative \nlikelihood \nratio\nLow prevalence (5%) High prevalence\
\ (33%)\nPositive \npredictive \nvalue (%)\nNegative \npredictive \nvalue (%)\n\
Positive \npredictive \nvalue (%)\nNegative \npredictive \nvalue (%)\nInfluenza\
\ A\nAdults \nCommercially available rapid influenza tests 85 0.58 82 3\
\ 98 22\nDigital immunoassays 23 0.25 55 1 92 11\nRapid nucleic acid amplification\
\ tests 44 0.13 70 1 96 6\nChildren \nCommercially available rapid influenza\
\ tests 76 0.39 80 2 97 16\nDigital immunoassays 46 0.13 71 1 96 6\nRapid nucleic\
\ acid amplification tests 90 0.10 83 0 98 5\nInfluenza B\nAdults \nCommercially\
\ available rapid influenza tests 332 0.67 95 3 99 25"
- "recommended dosages. 28 However, extended treatment \ncourses may be indicated\
\ in critically ill patients. 18 Support-\nive treatment and management of complications,\
\ including \npotential secondary bacterial pneumonia, are paramount. \nCorticosteroids\
\ are not recommended unless the patient \nhas another approved indication for\
\ their use.18,28 Treatment \nresistance should be considered in patients who\
\ take anti -\nvirals and develop lower respiratory tract disease, although \n\
this is less likely than natural disease progression and more \ncommon in immunosuppressed\
\ patients.18\nPregnancy is an independent risk factor for complicated \ninfluenza.\
\ The risk of maternal death increases with each"
- source_sentence: What is the role of ipratropium in the treatment of the common
cold according to the context?
sentences:
- "sistent, dry or wet\nCommon None or low \ngrade\nUncommon Mild Common Uncommon\
\ Uncommon Common, mild Common\nAllergic \nrhinitis\nGradual Common, chronic Possible,\
\ especially \non awakening\nNone Common, \nprominent\nNone Common Prominent Common\
\ Uncommon Uncommon\nBacterial \nsinusitis\nGradual Common Common Common Common\
\ Common Uncommon Uncommon Common Common Uncommon\nCommon \ncold\nGradual Common,\
\ dry Common None or low \ngrade\nCommon Mild Common Common Common Common, mild\
\ Uncommon\nInfluenza Abrupt Common, dry \nhacking\nCommon Characteristic; \
\ \nhigh and rises \nrapidly\nCommon Early, \nprominent\nUncommon Uncommon Possible\
\ Prominent Uncommon\nPertussis Gradual Prominent, parox-\nysmal, whoop-like\n\
Uncommon None or low \ngrade"
- 'common cold are inhibited by intranasal administration
of ipratropium.25 The nasal discharge also consists of a
protein-rich plasma exudate derived from subepithelial
capillaries,28 which may explain why anticholinergics
only partly inhibit nasal discharge associated with
URTIs.27
The colour of nasal discharge and sputum is often
used as a clinical marker to determine whether or not to
prescribe antibiotics but there is no evidence from the
literature that supports this concept,29 since colour
changes in nasal discharge or sputum reflect the severity
of the inflammatory response30 rather than the nature of
the infection. Much of the literature relates to colour
changes in sputum and the lower airways but the same'
- "release by leukocytic pyrogen (interleukin-1). A mechanism for the\nincreased\
\ degradation of muscle proteins during fever. N Engl J\nMed1983; 308: 553–58.\n\
64 Kotler DP. Cachexia. Ann Intern Med2000; 133: 622–34. \n65 Ferreira SH. Prostaglandins,\
\ pain, and inflammation. Agents\nActions Suppl1986; 19: 91–98."
- source_sentence: 'QUESTION #1: How might changes in posture from sitting to supine
affect sinus pain according to the context?'
sentences:
- 'gas absorption from the sinus and “vacuum maxillary
sinusitis”.37 However, sinuses with patent ostia may also
be painful, indicating that the generation of
inflammatory mediators within the sinus may be
sufficient to trigger the sensation of pain either by direct
stimulation of pain nerve fibres or via distension of blood
vessels that are also served by sensory nerves.36 Changes
in posture from sitting to supine cause an increase in
sinus pain that may be related to dilation of the blood
vessels draining the sinus caused by an increase in
venous pressure. Pressure changes in the sinus may also
cause pain by stimulation of branches of the trigeminal
nerve that course in and around the sinuses.37
Watery eyes'
- "American Indians and Alaska Natives\nChildren younger than 5 years (particularly\
\ those younger \nthan 2 years)\nInstitutionalized adults (e.g., residents of\
\ nursing homes or \nchronic care facilities)\nPregnant and postpartum women (up\
\ to 2 weeks postpartum, \nincluding pregnancy loss)\nAdapted with permission\
\ from Erlikh IV, Abraham S, Kondamudi VK. \nManagement of influenza. Am Fam Physician.\
\ 2010; 82(9): 1088, with \nadditional information from references 18 and 19."
- "sary Antibiotics\nStep Examples\nExplain why \nantibiotics will \nnot help\n\
“The common cold is caused by a virus, so antibiot -\nics won’t help.”\n“Antibiotics\
\ can’t fight viruses like colds. Taking them \nwon’t do any good this time and\
\ may hurt their \nchances of fighting bacterial infections you might \nget in\
\ the future.”\nSuggest treat-\nments that might \nhelp\n“You can try honey for\
\ your cough, ibuprofen or \nacetaminophen for your muscle aches, and nasal or\
\ \noral decongestants with or without an antihistamine \nfor your congestion.”\n\
Manage expec-\ntations for length \nof illness\n“Cold viruses can make you feel\
\ lousy. Most people \nstart to feel better after about a week, but some -\ntimes\
\ the cough can last even longer, especially if \nyou smoke.”"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9166666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3055555555555555
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9166666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8864909792836682
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8486111111111113
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8486111111111111
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Gonalb/flucold-ft-v0")
# Run inference
sentences = [
'QUESTION #1: How might changes in posture from sitting to supine affect sinus pain according to the context?',
'gas absorption from the sinus and “vacuum maxillary\nsinusitis”.37 However, sinuses with patent ostia may also\nbe painful, indicating that the generation of\ninflammatory mediators within the sinus may be\nsufficient to trigger the sensation of pain either by direct\nstimulation of pain nerve fibres or via distension of blood\nvessels that are also served by sensory nerves.36 Changes\nin posture from sitting to supine cause an increase in\nsinus pain that may be related to dilation of the blood\nvessels draining the sinus caused by an increase in\nvenous pressure. Pressure changes in the sinus may also\ncause pain by stimulation of branches of the trigeminal\nnerve that course in and around the sinuses.37\nWatery eyes',
'American Indians and Alaska Natives\nChildren younger than 5 years (particularly those younger \nthan 2 years)\nInstitutionalized adults (e.g., residents of nursing homes or \nchronic care facilities)\nPregnant and postpartum women (up to 2 weeks postpartum, \nincluding pregnancy loss)\nAdapted with permission from Erlikh IV, Abraham S, Kondamudi VK. \nManagement of influenza. Am Fam Physician. 2010; 82(9): 1088, with \nadditional information from references 18 and 19.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.75 |
| cosine_accuracy@3 | 0.9167 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.75 |
| cosine_precision@3 | 0.3056 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.75 |
| cosine_recall@3 | 0.9167 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8865** |
| cosine_mrr@10 | 0.8486 |
| cosine_map@100 | 0.8486 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 334 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 334 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 24.85 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 61 tokens</li><li>mean: 159.74 tokens</li><li>max: 248 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>QUESTION #1: What is the source website from which the document was downloaded?</code> | <code>Downloaded from the American Family Physician website at www.aafp.org/afp. Copyright © 2019 American Academy of Family Physicians. For the private, noncom -<br>mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests.</code> |
| <code>QUESTION #2: Who should be contacted for copyright questions and/or permission requests regarding the document?</code> | <code>Downloaded from the American Family Physician website at www.aafp.org/afp. Copyright © 2019 American Academy of Family Physicians. For the private, noncom -<br>mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests.</code> |
| <code>QUESTION #1: Why is early diagnosis essential for antiviral therapy and public-health measures in the community?</code> | <code>syndrome (SARS) 3 because early diagnosis is essential<br>for any antiviral therapy and for the initiation of public-<br>health measures in the community (eg, isolation of<br>infected cases). Here, I discuss the mechanisms that<br>generate symptoms associated with URTIs, especially<br>common cold and flu, but will not review virology in any<br>detail except as regards relevance to symptoms. <br>Is it a cold or flu?<br>The clinical expression of URTIs is variable and is<br>partly influenced by the nature of the infecting virus<br>but to a greater extent is modulated by the age,<br>physiological state, and immunological experience of<br>the host. 4 Depending on these factors, URTIs may<br>occur without symptoms, may kill, or most commonly</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:------:|:----:|:--------------:|
| 1.0 | 34 | 0.9108 |
| 1.4706 | 50 | 0.9098 |
| 2.0 | 68 | 0.8834 |
| 2.9412 | 100 | 0.9051 |
| 3.0 | 102 | 0.9066 |
| 4.0 | 136 | 0.9205 |
| 4.4118 | 150 | 0.9019 |
| 5.0 | 170 | 0.9156 |
| 5.8824 | 200 | 0.9247 |
| 6.0 | 204 | 0.9238 |
| 7.0 | 238 | 0.9019 |
| 7.3529 | 250 | 0.8856 |
| 8.0 | 272 | 0.8856 |
| 8.8235 | 300 | 0.8879 |
| 9.0 | 306 | 0.8879 |
| 10.0 | 340 | 0.8865 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |