File size: 31,573 Bytes
ecf317f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:334
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: 'QUESTION #1: What are the potential adverse effects associated
    with the use of peramivir?'
  sentences:
  - "although poultry-to-human and human-to-human trans -\nmission remains relatively\
    \ low. Despite low transmissibility, \nthe reported fatality rate is high (approximately\
    \ 60%).14\nPrevention\nThe Centers for Disease Control and Prevention’s (CDC’s)\
    \ \nAdvisory Committee on Immunization Practices (ACIP) \nand the American Academy\
    \ of Family Physicians (AAFP) \nrecommend annual influenza vaccination for all\
    \ people six \nmonths and older who do not have contraindications. 15,16 \nVaccination\
    \ efforts should target people at increased risk of \ncomplicated or severe influenza\
    \ (Table 117-19) and those who \ncare for or live with high-risk individuals,\
    \ including health \ncare professionals. 15 Two previous FPM articles provided"
  - 'increased sensitivity to pain.60 These cytokines are also

    associated with URTIs and may mediate mood changes

    associated with these infections.

    Anorexia

    Anorexia is a common behavioural response to URTIs,

    and this response has entered the folklore as advice to

    Figure 4: Fever is caused by cytokines released from macrophages and other

    immune cells

    The cytokines may act on vagal nerve endings or enter the brain to cause a

    resetting of the temperature control centre in the hypothalamus. The

    hypothalamus causes shivering and constriction of skin blood vessels and also

    initiates a sensation of chilliness that is perceived at the level of the cerebral

    cortex. IL=interleukin; TNF=tumour necrosis factor.

    Vagal

    nerves

    ShiveringMacrophages'
  - "older who have been \nsymptomatic for no \nmore than 48 hours\nContraindicated\
    \ in people \nwith serious hypersensitivity or \nanaphylaxis to peramivir or any\
    \ \ncomponent of the product\nPotential adverse effects include \ndiarrhea, nausea,\
    \ vomiting, and \nneutropenia\nWeigh risks and benefits during \npregnancy; no\
    \ human data \navailable; no known risk of \nembryo-fetal toxicity based on \n\
    animal data at 8 times the recom -\nmended human dose; possible \nrisk of embryo-fetal\
    \ toxicity with \ncontinuous intravenous infusion \nbased on limited animal data\n\
    Baloxavir (Xofluza), \navailable as oral \ntablets\nNA ($160) Adults and children\
    \ 12 years \nand older:  \n88 to 174 lb (40 to 79 kg):  \nsingle dose of 40 mg\
    \  \n≥ 175 lb (80 kg):  single dose \nof 80 mg"
- source_sentence: Why is Influenza A most responsible for causing pandemics?
  sentences:
  - "on the first day of symptoms, medications containing ibu -\nprofen and pseudoephedrine\
    \ may reduce the severity of cold \nsymptoms.35 Antihistamine monotherapy is not\
    \ effective \nfor relieving cough.6,23\nIpratropium. Inhaled ipratropium is the\
    \ only medication \nthat improves persistent cough related to URI in adults. 24,36\
    \  \nTABLE 1\nDifferential Diagnosis for the Common Cold\nDiagnosis\nSymptom \n\
    onset Cough Sore throat Fever Rhinorrhea Aches Watery eyes Sneezing\nNasal  \n\
    congestion Headache\nShortness  \nof breath\nAcute \nbronchitis\nGradual Prominent,\
    \ per-\nsistent, dry or wet\nCommon None or low \ngrade\nUncommon Mild Common\
    \ Uncommon Uncommon Common, mild Common\nAllergic \nrhinitis\nGradual Common,\
    \ chronic Possible, especially \non awakening\nNone Common,"
  - "Patient information:   Handouts on this topic are available \nat https:// family\
    \ doctor.org/preventing-the-flu and https:// \nfamily doctor.org/flu-myths.\n\
    Influenza is an acute viral respiratory infection that causes significant morbidity\
    \ and mortality worldwide. Three types of influ-\nenza cause disease in humans.\
    \ Influenza A is the type most responsible for causing pandemics because of its\
    \ high susceptibility \nto antigenic variation. Influenza is highly contagious,\
    \ and the hallmark of infection is abrupt onset of fever, cough, chills or \n\
    sweats, myalgias, and malaise. For most patients in the outpatient setting, the\
    \ diagnosis is made clinically, and laboratory con-"
  - "www.aafp.org/fpm/2017/0900/p6.html\n 22.  Centers for Disease Control and Prevention.\
    \ Influenza (flu):  immuno -\ngenicity, efficacy, and effectiveness of influenza\
    \ vaccines. Updated \nAugust 23, 2018. Accessed January 22, 2019. https:// www.cdc.gov/flu/\n\
    professionals/acip/2018-2019/background/immunogenicity.htm\n 23.  DiazGranados\
    \ CA, Dunning AJ, Kimmel M, et al. Efficacy of high-dose \nversus standard-dose\
    \ influenza vaccine in older adults. N Engl J Med. \n2014; 371(7): 635-645.\n\
    \ 24.  DiazGranados CA, Robertson CA, Talbot HK, et al. Prevention of serious\
    \ \nevents in adults 65 years of age or older:  a comparison between high-\ndose\
    \ and standard-dose inactivated influenza vaccines. Vaccine. 2015;  \n33(38):\
    \ 4988-4993."
- source_sentence: How does the negative likelihood ratio for digital immunoassays
    compare between adults and children for Influenza A?
  sentences:
  - "17.  Erlikh IV, Abraham S, Kondamudi VK. Management of influenza. Am \nFam Physician\
    \ . 2010;  82(9): 1087-1095. Accessed September  5, 2019. \nhttps:// www.aafp.org/afp/2010/1101/p1087.html\n\
    \ 18.  Centers for Disease Control and Prevention. Influenza (flu):  for clini\
    \ -\ncians:  antiviral medication. Updated Decemebr 27, 2018. Accessed \nFebruary\
    \ 24, 2019. https:// www.cdc.gov/flu/professionals/antivirals/\nsummary-clinicians.htm\n\
    \ 19.  Centers for Disease Control and Prevention. Influenza (flu):  guide for\
    \  \nconsidering influenza testing. Updated March 4, 2019. Accessed Octo -\nber\
    \ 5, 2019. https:// www.cdc.gov/flu/professionals/diagnosis/consider-\ninfluenza-testing.htm"
  - "TABLE 3\nAccuracy of Point-of-Care Tests for Influenza\nTest\nPositive  \nlikelihood\
    \  \nratio\nNegative \nlikelihood \nratio\nLow prevalence (5%) High prevalence\
    \ (33%)\nPositive \npredictive \nvalue (%)\nNegative \npredictive \nvalue (%)\n\
    Positive \npredictive \nvalue (%)\nNegative \npredictive \nvalue (%)\nInfluenza\
    \ A\nAdults       \nCommercially available rapid influenza tests 85 0.58 82 3\
    \ 98 22\nDigital immunoassays 23 0.25 55 1 92 11\nRapid nucleic acid amplification\
    \ tests 44 0.13 70 1 96 6\nChildren       \nCommercially available rapid influenza\
    \ tests 76 0.39 80 2 97 16\nDigital immunoassays 46 0.13 71 1 96 6\nRapid nucleic\
    \ acid amplification tests 90 0.10 83 0 98 5\nInfluenza B\nAdults       \nCommercially\
    \ available rapid influenza tests 332 0.67 95 3 99 25"
  - "recommended dosages. 28 However, extended treatment \ncourses may be indicated\
    \ in critically ill patients. 18 Support-\nive treatment and management of complications,\
    \ including \npotential secondary bacterial pneumonia, are paramount. \nCorticosteroids\
    \ are not recommended unless the patient \nhas another approved indication for\
    \ their use.18,28 Treatment \nresistance should be considered in patients who\
    \ take anti -\nvirals and develop lower respiratory tract disease, although \n\
    this is less likely than natural disease progression and more \ncommon in immunosuppressed\
    \ patients.18\nPregnancy is an independent risk factor for complicated \ninfluenza.\
    \ The risk of maternal death increases with each"
- source_sentence: What is the role of ipratropium in the treatment of the common
    cold according to the context?
  sentences:
  - "sistent, dry or wet\nCommon None or low \ngrade\nUncommon Mild Common Uncommon\
    \ Uncommon Common, mild Common\nAllergic \nrhinitis\nGradual Common, chronic Possible,\
    \ especially \non awakening\nNone Common, \nprominent\nNone Common Prominent Common\
    \ Uncommon Uncommon\nBacterial \nsinusitis\nGradual Common Common Common Common\
    \ Common Uncommon Uncommon Common Common Uncommon\nCommon \ncold\nGradual Common,\
    \ dry Common None or low \ngrade\nCommon Mild Common Common Common Common, mild\
    \ Uncommon\nInfluenza Abrupt Common, dry \nhacking\nCommon Characteristic;   \
    \ \nhigh and rises \nrapidly\nCommon Early, \nprominent\nUncommon Uncommon Possible\
    \ Prominent Uncommon\nPertussis Gradual Prominent, parox-\nysmal, whoop-like\n\
    Uncommon None or low \ngrade"
  - 'common cold are inhibited by intranasal administration

    of ipratropium.25 The nasal discharge also consists of a

    protein-rich plasma exudate derived from subepithelial

    capillaries,28 which may explain why anticholinergics

    only partly inhibit nasal discharge associated with

    URTIs.27

    The colour of nasal discharge and sputum is often

    used as a clinical marker to determine whether or not to

    prescribe antibiotics but there is no evidence from the

    literature that supports this concept,29 since colour

    changes in nasal discharge or sputum reflect the severity

    of the inflammatory response30 rather than the nature of

    the infection. Much of the literature relates to colour

    changes in sputum and the lower airways but the same'
  - "release by leukocytic pyrogen (interleukin-1). A mechanism for the\nincreased\
    \ degradation of muscle proteins during fever. N Engl J\nMed1983; 308: 553–58.\n\
    64 Kotler DP. Cachexia. Ann Intern Med2000; 133: 622–34. \n65 Ferreira SH. Prostaglandins,\
    \ pain, and inflammation. Agents\nActions Suppl1986; 19: 91–98."
- source_sentence: 'QUESTION #1: How might changes in posture from sitting to supine
    affect sinus pain according to the context?'
  sentences:
  - 'gas absorption from the sinus and “vacuum maxillary

    sinusitis”.37 However, sinuses with patent ostia may also

    be painful, indicating that the generation of

    inflammatory mediators within the sinus may be

    sufficient to trigger the sensation of pain either by direct

    stimulation of pain nerve fibres or via distension of blood

    vessels that are also served by sensory nerves.36 Changes

    in posture from sitting to supine cause an increase in

    sinus pain that may be related to dilation of the blood

    vessels draining the sinus caused by an increase in

    venous pressure. Pressure changes in the sinus may also

    cause pain by stimulation of branches of the trigeminal

    nerve that course in and around the sinuses.37

    Watery eyes'
  - "American Indians and Alaska Natives\nChildren younger than 5 years (particularly\
    \ those younger \nthan 2 years)\nInstitutionalized adults (e.g., residents of\
    \ nursing homes or \nchronic care facilities)\nPregnant and postpartum women (up\
    \ to 2 weeks postpartum, \nincluding pregnancy loss)\nAdapted with permission\
    \ from Erlikh IV, Abraham S, Kondamudi VK. \nManagement of influenza. Am Fam Physician.\
    \ 2010; 82(9): 1088, with \nadditional information from references 18 and 19."
  - "sary Antibiotics\nStep Examples\nExplain why \nantibiotics will \nnot help\n\
    “The common cold is caused by a virus, so antibiot -\nics won’t help.”\n“Antibiotics\
    \ can’t fight viruses like colds. Taking them \nwon’t do any good this time and\
    \ may hurt their \nchances of fighting bacterial infections you might \nget in\
    \ the future.”\nSuggest treat-\nments that might \nhelp\n“You can try honey for\
    \ your cough, ibuprofen or \nacetaminophen for your muscle aches, and nasal or\
    \ \noral decongestants with or without an antihistamine \nfor your congestion.”\n\
    Manage expec-\ntations for length \nof illness\n“Cold viruses can make you feel\
    \ lousy. Most people \nstart to feel better after about a week, but some -\ntimes\
    \ the cough can last even longer, especially if \nyou smoke.”"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.75
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9166666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.75
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3055555555555555
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.75
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9166666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8864909792836682
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8486111111111113
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8486111111111111
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Gonalb/flucold-ft-v0")
# Run inference
sentences = [
    'QUESTION #1: How might changes in posture from sitting to supine affect sinus pain according to the context?',
    'gas absorption from the sinus and “vacuum maxillary\nsinusitis”.37 However, sinuses with patent ostia may also\nbe painful, indicating that the generation of\ninflammatory mediators within the sinus may be\nsufficient to trigger the sensation of pain either by direct\nstimulation of pain nerve fibres or via distension of blood\nvessels that are also served by sensory nerves.36 Changes\nin posture from sitting to supine cause an increase in\nsinus pain that may be related to dilation of the blood\nvessels draining the sinus caused by an increase in\nvenous pressure. Pressure changes in the sinus may also\ncause pain by stimulation of branches of the trigeminal\nnerve that course in and around the sinuses.37\nWatery eyes',
    'American Indians and Alaska Natives\nChildren younger than 5 years (particularly those younger \nthan 2 years)\nInstitutionalized adults (e.g., residents of nursing homes or \nchronic care facilities)\nPregnant and postpartum women (up to 2 weeks postpartum, \nincluding pregnancy loss)\nAdapted with permission from Erlikh IV, Abraham S, Kondamudi VK. \nManagement of influenza. Am Fam Physician. 2010; 82(9): 1088, with \nadditional information from references 18 and 19.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.75       |
| cosine_accuracy@3   | 0.9167     |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.75       |
| cosine_precision@3  | 0.3056     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.75       |
| cosine_recall@3     | 0.9167     |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.8865** |
| cosine_mrr@10       | 0.8486     |
| cosine_map@100      | 0.8486     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 334 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 334 samples:
  |         | sentence_0                                                                         | sentence_1                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 12 tokens</li><li>mean: 24.85 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 61 tokens</li><li>mean: 159.74 tokens</li><li>max: 248 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                    | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>QUESTION #1: What is the source website from which the document was downloaded?</code>                                  | <code>Downloaded from the American Family Physician website at www.aafp.org/afp. Copyright © 2019 American Academy of Family Physicians. For the private, noncom -<br>mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  | <code>QUESTION #2: Who should be contacted for copyright questions and/or permission requests regarding the document?</code>  | <code>Downloaded from the American Family Physician website at www.aafp.org/afp. Copyright © 2019 American Academy of Family Physicians. For the private, noncom -<br>mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  | <code>QUESTION #1: Why is early diagnosis essential for antiviral therapy and public-health measures in the community?</code> | <code>syndrome (SARS) 3 because early diagnosis is essential<br>for any antiviral therapy and for the initiation of public-<br>health measures in the community (eg, isolation of<br>infected cases). Here, I discuss the mechanisms that<br>generate symptoms associated with URTIs, especially<br>common cold and flu, but will not review virology in any<br>detail except as regards relevance to symptoms. <br>Is it a cold or flu?<br>The clinical expression of URTIs is variable and is<br>partly influenced by the nature of the infecting virus<br>but to a greater extent is modulated by the age,<br>physiological state, and immunological experience of<br>the host. 4 Depending on these factors, URTIs may<br>occur without symptoms, may kill, or most commonly</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_ndcg@10 |
|:------:|:----:|:--------------:|
| 1.0    | 34   | 0.9108         |
| 1.4706 | 50   | 0.9098         |
| 2.0    | 68   | 0.8834         |
| 2.9412 | 100  | 0.9051         |
| 3.0    | 102  | 0.9066         |
| 4.0    | 136  | 0.9205         |
| 4.4118 | 150  | 0.9019         |
| 5.0    | 170  | 0.9156         |
| 5.8824 | 200  | 0.9247         |
| 6.0    | 204  | 0.9238         |
| 7.0    | 238  | 0.9019         |
| 7.3529 | 250  | 0.8856         |
| 8.0    | 272  | 0.8856         |
| 8.8235 | 300  | 0.8879         |
| 9.0    | 306  | 0.8879         |
| 10.0   | 340  | 0.8865         |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->