import os DATA_DIR = 'minbert-data' MODEL_DIR = 'minbert-model' # Pretrained weights SUP_BERT = os.path.join(MODEL_DIR, 'sup-cse-bert.pth') UNSUP_BERT = os.path.join(MODEL_DIR, 'unsup-cse-bert.pth') # CFIMDB dataset IDS_CFIMDB_DEV = os.path.join(DATA_DIR, 'ids-cfimdb-dev.csv') IDS_CFIMDB_TEST = os.path.join(DATA_DIR, 'ids-cfimdb-test-student.csv') IDS_CFIMDB_TRAIN = os.path.join(DATA_DIR, 'ids-cfimdb-train.csv') # SST dataset IDS_SST_DEV = os.path.join(DATA_DIR, 'ids-sst-dev.csv') IDS_SST_TEST = os.path.join(DATA_DIR, 'ids-sst-test-student.csv') IDS_SST_TRAIN = os.path.join(DATA_DIR, 'ids-sst-train.csv') # SimCSE train/dev dataset NLI_TRAIN = os.path.join(DATA_DIR, 'nli-train.parquet') AMAZON_POLARITY = os.path.join(DATA_DIR, 'amazon-polarity.parquet') STSB_DEV = os.path.join(DATA_DIR, 'stsb-dev.parquet') # Training-specific constants SEED=11711 NUM_CPU_CORES=4 EPOCHS=10 USE_GPU=True BATCH_SIZE_CSE=8 BATCH_SIZE_SST=64 BATCH_SIZE_CFIMDB=8 HIDDEN_DROPOUT_PROB=0.3