|
from typing import Callable, Iterable, Tuple |
|
import math |
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
|
|
|
|
class AdamW(Optimizer): |
|
def __init__( |
|
self, |
|
params: Iterable[torch.nn.parameter.Parameter], |
|
lr: float = 1e-3, |
|
betas: Tuple[float, float] = (0.9, 0.999), |
|
eps: float = 1e-6, |
|
weight_decay: float = 0.0, |
|
correct_bias: bool = True, |
|
): |
|
if lr < 0.0: |
|
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1])) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps)) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias) |
|
super().__init__(params, defaults) |
|
|
|
def step(self, closure: Callable = None): |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead") |
|
|
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
state["exp_avg"] = torch.zeros_like(p.data) |
|
state["exp_avg_sq"] = torch.zeros_like(p.data) |
|
|
|
|
|
alpha = group["lr"] |
|
beta1, beta2 = group["betas"] |
|
eps = group["eps"] |
|
weight_decay = group["weight_decay"] |
|
correct_bias = group["correct_bias"] |
|
|
|
|
|
exp_avg = state["exp_avg"] |
|
exp_avg_sq = state["exp_avg_sq"] |
|
step = state["step"] |
|
|
|
|
|
step += 1 |
|
state["step"] = step |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=(1 - beta1)) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) |
|
|
|
|
|
if correct_bias: |
|
bias_correction1 = 1 - beta1 ** step |
|
bias_correction2 = 1 - beta2 ** step |
|
exp_avg_corr = exp_avg / bias_correction1 |
|
exp_avg_sq_corr = exp_avg_sq / bias_correction2 |
|
else: |
|
exp_avg_corr = exp_avg |
|
exp_avg_sq_corr = exp_avg_sq |
|
|
|
|
|
denom = exp_avg_sq_corr.sqrt().add_(eps) |
|
step_size = alpha |
|
p.data.addcdiv_(exp_avg_corr, denom, value=-step_size) |
|
|
|
|
|
if weight_decay != 0: |
|
p.data.add_(p.data, alpha=-alpha * weight_decay) |
|
|
|
return loss |
|
|