minBERT / finetuning.py
GlowCheese's picture
Transfer code from Kaggle
a0b398e
from classifier_utils import *
TQDM_DISABLE=True
def unsup_contrastive_loss(embeds_1: Tensor, embeds_2: Tensor, temp=0.05):
'''
embeds_1: [batch_size, hidden_size]
embeds_2: [batch_size, hidden_size]
'''
# [batch_size, batch_size]
sim_matrix = F.cosine_similarity(embeds_1.unsqueeze(1), embeds_2.unsqueeze(0), dim=-1) / temp
# [batch_size]
positive_sim = torch.diagonal(sim_matrix)
# [batch_size]
nume = torch.exp(positive_sim)
# [batch_size]
deno = torch.exp(sim_matrix).sum(1)
# [batch_size]
loss_per_batch = -torch.log(nume / deno)
return loss_per_batch.sum()
def sup_contrastive_loss(embeds_1: Tensor, embeds_2: Tensor, embeds_3: Tensor, temp=0.05):
'''
embeds_1: [batch_size, hidden_size]
embeds_2: [batch_size, hidden_size]
embeds_3: [batch_size, hidden_size]
'''
# [batch_size, batch_size]
pos_sim_matrix = F.cosine_similarity(embeds_1.unsqueeze(1), embeds_2.unsqueeze(0), dim=-1) / temp
neg_sim_matrix = F.cosine_similarity(embeds_1.unsqueeze(1), embeds_3.unsqueeze(0), dim=-1) / temp
# [batch_size]
positive_sim = torch.diagonal(pos_sim_matrix)
# [batch_size]
nume = torch.exp(positive_sim)
# [batch_size]
deno = (torch.exp(pos_sim_matrix) + torch.exp(neg_sim_matrix)).sum(1)
# [batch_size]
loss_per_batch = -torch.log(nume / deno)
return loss_per_batch.sum()
def sts_eval(dataloader, model: BertModel, device):
model.eval()
y_true = []
y_pred = []
sent_ids = []
with torch.no_grad():
for batch in tqdm(dataloader, desc='eval', leave=False, disable=TQDM_DISABLE):
token_ids_1 = batch['token_ids_1'].to(device)
token_ids_2 = batch['token_ids_2'].to(device)
attention_mask_1 = batch['attention_mask_1'].to(device)
attention_mask_2 = batch['attention_mask_2'].to(device)
scores = batch['score']
b_sent_ids = batch['sent_ids']
logits_1 = model(token_ids_1, attention_mask_1)['pooler_output']
logits_2 = model(token_ids_2, attention_mask_2)['pooler_output']
sim = F.cosine_similarity(logits_1, logits_2)
y_true.extend(scores)
y_pred.extend(sim.cpu().tolist())
sent_ids.extend(b_sent_ids)
spearman_corr, _ = spearmanr(y_pred, y_true)
return spearman_corr, b_sent_ids
def finetune_bert(args):
'''
Finetuning Baseline
-------------------
1. Load the Amazon Polarity (train) and STS Dataset (dev).
2. Initialize pretrained minBERT
3. Looping through 10 epoches.
4. Calculate batches' SimCSE loss function.
5. Backpropagation using Adam Optimizer.
6. Evaluation on dev dataset:
6.1. Create two [CLS] embeddings for given pair.
6.2. Calculate their cosine similarity (0 <= sim <= 1).
6.3. Spearman's correlation between calculated sim and expected sim.
7. Better spearman's correlation (dev_acc > best_dev_acc) -> save_model(...).
'''
assert args.mode in ['unsup', 'sup']
seed_everything(SEED)
torch.set_num_threads(NUM_CPU_CORES)
if args.mode == 'unsup':
train_dataset = AmazonDataset(load_data(AMAZON_POLARITY, 'amazon'))
else:
train_dataset = InferenceDataset(load_data(NLI_TRAIN, 'nli'))
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size_train,
num_workers=NUM_CPU_CORES, collate_fn=train_dataset.collate_fn)
sts_dataset = SemanticDataset(load_data(STSB_DEV, 'stsb'))
sts_dataloader = DataLoader(sts_dataset, shuffle=False, batch_size=args.batch_size_dev,
num_workers=NUM_CPU_CORES, collate_fn=sts_dataset.collate_fn)
device = torch.device('cuda') if USE_GPU else torch.device('cpu')
model = BertModel.from_pretrained('bert-base-uncased')
model.to(device)
best_dev_acc = 0
optimizer = AdamW(model.parameters(), lr=args.lr)
print(f'Finetuning minBERT with {args.mode}ervised method...')
for epoch in range(EPOCHS):
model.train()
train_loss = num_batches = 0
for batch in tqdm(train_dataloader, f'train-{epoch}', leave=False, disable=TQDM_DISABLE):
if args.mode == 'unsup':
b_ids = batch['token_ids'].to(device)
b_mask = batch['attention_mask'].to(device)
# Get different embeddings with different dropout masks
logits_1 = model(b_ids, b_mask)['pooler_output']
logits_2 = model(b_ids, b_mask)['pooler_output']
# Calculate mean SimCSE loss function
loss = unsup_contrastive_loss(logits_1, logits_2, args.temp)
else:
b_anchor_ids = batch['anchor_ids'].to(device)
b_positive_ids = batch['positive_ids'].to(device)
b_negative_ids = batch['negative_ids'].to(device)
b_anchor_masks = batch['anchor_masks'].to(device)
b_positive_masks = batch['positive_masks'].to(device)
b_negative_masks = batch['negative_masks'].to(device)
logits_1 = model(b_anchor_ids, b_anchor_masks)['pooler_output']
logits_2 = model(b_positive_ids, b_positive_masks)['pooler_output']
logits_3 = model(b_negative_ids, b_negative_masks)['pooler_output']
loss = sup_contrastive_loss(logits_1, logits_2, logits_3, args.temp)
# Back propagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
num_batches += 1
train_loss /= num_batches
dev_acc, _ = sts_eval(sts_dataloader, model, device)
if dev_acc > best_dev_acc:
best_dev_acc = dev_acc
torch.save(model.state_dict(), args.filepath)
print(f"save the model to {args.filepath}")
print(f"Epoch {epoch}: train loss :: {train_loss :.3f}, dev acc :: {dev_acc :.3f}")