File size: 104,010 Bytes
a0b398e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
from typing import List, Optional, Tuple, Dict, Union, Any, overload, Sequence, NamedTuple
import collections
import os
import re
import unicodedata
import itertools
import requests
import copy
import json
from contextlib import contextmanager
from collections import OrderedDict, UserDict
from enum import Enum
import numpy as np
from utils import cached_path, hf_bucket_url, is_remote_url, is_tf_available, is_torch_available
from tokenizers import AddedToken
from tokenizers import Encoding as EncodingFast


VERY_LARGE_INTEGER = int(1e30)  # This is used to set the max input length for a model with infinite size input
LARGE_INTEGER = int(1e20)  # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER

SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
ADDED_TOKENS_FILE = "added_tokens.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
FULL_TOKENIZER_FILE = "tokenizer.json"

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt"
    }
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "bert-base-uncased": 512
}
PRETRAINED_INIT_CONFIGURATION = {
    "bert-base-uncased": {"do_lower_case": True}
}


TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[int]
TextInputPair = Tuple[str, str]
PreTokenizedInputPair = Tuple[List[str], List[str]]
EncodedInputPair = Tuple[List[int], List[int]]


class ExplicitEnum(Enum):
  @classmethod
  def _missing_(cls, value):
    raise ValueError(
      "%r is not a valid %s, please select one of %s"
      % (value, cls.__name__, str(list(cls._value2member_map_.keys())))
    )


class TruncationStrategy(ExplicitEnum):
  ONLY_FIRST = "only_first"
  ONLY_SECOND = "only_second"
  LONGEST_FIRST = "longest_first"
  DO_NOT_TRUNCATE = "do_not_truncate"


class PaddingStrategy(ExplicitEnum):
  LONGEST = "longest"
  MAX_LENGTH = "max_length"
  DO_NOT_PAD = "do_not_pad"


class TensorType(ExplicitEnum):
  PYTORCH = "pt"
  TENSORFLOW = "tf"
  NUMPY = "np"
  JAX = "jax"


class CharSpan(NamedTuple):
  start: int
  end: int


class TokenSpan(NamedTuple):
  start: int
  end: int


def to_py_obj(obj):
  """
  Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
  """
  if isinstance(obj, (dict, BatchEncoding)):
    return {k: to_py_obj(v) for k, v in obj.items()}
  elif isinstance(obj, (list, tuple)):
    return [to_py_obj(o) for o in obj]
  elif is_tf_available() and _is_tensorflow(obj):
    return obj.numpy().tolist()
  elif is_torch_available() and _is_torch(obj):
    return obj.detach().cpu().tolist()
  elif isinstance(obj, np.ndarray):
    return obj.tolist()
  else:
    return obj


def _is_torch(x):
  import torch
  return isinstance(x, torch.Tensor)


def _is_torch_device(x):
  import torch
  return isinstance(x, torch.device)


def _is_end_of_word(text):
  last_char = text[-1]
  return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char))


def _is_start_of_word(text):
  first_char = text[0]
  return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char))


def _is_punctuation(char):
  cp = ord(char)
  # We treat all non-letter/number ASCII as punctuation.
  # Characters such as "^", "$", and "`" are not in the Unicode
  # Punctuation class but we treat them as punctuation anyways, for
  # consistency.
  if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
    return True
  cat = unicodedata.category(char)
  if cat.startswith("P"):
    return True
  return False


def _is_whitespace(char):
  # \t, \n, and \r are technically control characters but we treat them
  # as whitespace since they are generally considered as such.
  if char == " " or char == "\t" or char == "\n" or char == "\r":
    return True
  cat = unicodedata.category(char)
  if cat == "Zs":
    return True
  return False


def _is_control(char):
  # These are technically control characters but we count them as whitespace
  # characters.
  if char == "\t" or char == "\n" or char == "\r":
    return False
  cat = unicodedata.category(char)
  if cat.startswith("C"):
    return True
  return False


def load_vocab(vocab_file):
  vocab = collections.OrderedDict()
  with open(vocab_file, "r", encoding="utf-8") as reader:
    tokens = reader.readlines()
  for index, token in enumerate(tokens):
    token = token.rstrip("\n")
    vocab[token] = index
  return vocab


def whitespace_tokenize(text):
  text = text.strip()
  if not text:
    return []
  tokens = text.split()
  return tokens


class BatchEncoding(UserDict):
  def __init__(
    self,
    data: Optional[Dict[str, Any]] = None,
    encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None,
    tensor_type: Union[None, str, TensorType] = None,
    prepend_batch_axis: bool = False,
    n_sequences: Optional[int] = None,
  ):
    super().__init__(data)

    if isinstance(encoding, EncodingFast):
      encoding = [encoding]

    self._encodings = encoding

    if n_sequences is None and encoding is not None and len(encoding):
      n_sequences = encoding[0].n_sequences

    self._n_sequences = n_sequences

    self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis)

  @property
  def n_sequences(self) -> Optional[int]:
    return self._n_sequences

  @property
  def is_fast(self) -> bool:
    return self._encodings is not None

  def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]:
    if isinstance(item, str):
      return self.data[item]
    elif self._encodings is not None:
      return self._encodings[item]
    else:
      raise KeyError(
        "Indexing with integers (to access backend Encoding for a given batch index) "
        "is not available when using Python based tokenizers"
      )

  def __getattr__(self, item: str):
    try:
      return self.data[item]
    except KeyError:
      raise AttributeError

  def __getstate__(self):
    return {"data": self.data, "encodings": self._encodings}

  def __setstate__(self, state):
    if "data" in state:
      self.data = state["data"]

    if "encodings" in state:
      self._encodings = state["encodings"]

  def keys(self):
    return self.data.keys()

  def values(self):
    return self.data.values()

  def items(self):
    return self.data.items()

  # After this point:
  # Extended properties and methods only available for fast (Rust-based) tokenizers
  # provided by HuggingFace tokenizers library.

  @property
  def encodings(self) -> Optional[List[EncodingFast]]:
    return self._encodings

  def tokens(self, batch_index: int = 0) -> List[str]:
    if not self._encodings:
      raise ValueError("tokens() is not available when using Python-based tokenizers")
    return self._encodings[batch_index].tokens

  def sequence_ids(self, batch_index: int = 0) -> List[Optional[int]]:
    if not self._encodings:
      raise ValueError("sequence_ids() is not available when using Python-based tokenizers")
    return self._encodings[batch_index].sequence_ids

  def words(self, batch_index: int = 0) -> List[Optional[int]]:
    if not self._encodings:
      raise ValueError("words() is not available when using Python-based tokenizers")
    return self.word_ids(batch_index)

  def word_ids(self, batch_index: int = 0) -> List[Optional[int]]:
    if not self._encodings:
      raise ValueError("word_ids() is not available when using Python-based tokenizers")
    return self._encodings[batch_index].word_ids

  def token_to_sequence(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
    if not self._encodings:
      raise ValueError("token_to_sequence() is not available when using Python based tokenizers")
    if token_index is not None:
      batch_index = batch_or_token_index
    else:
      batch_index = 0
      token_index = batch_or_token_index
    if batch_index < 0:
      batch_index = self._batch_size + batch_index
    if token_index < 0:
      token_index = self._seq_len + token_index
    return self._encodings[batch_index].token_to_sequence(token_index)

  def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
    if not self._encodings:
      raise ValueError("token_to_word() is not available when using Python based tokenizers")
    if token_index is not None:
      batch_index = batch_or_token_index
    else:
      batch_index = 0
      token_index = batch_or_token_index
    if batch_index < 0:
      batch_index = self._batch_size + batch_index
    if token_index < 0:
      token_index = self._seq_len + token_index
    return self._encodings[batch_index].token_to_word(token_index)

  def word_to_tokens(
    self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
  ) -> Optional[TokenSpan]:
    if not self._encodings:
      raise ValueError("word_to_tokens() is not available when using Python based tokenizers")
    if word_index is not None:
      batch_index = batch_or_word_index
    else:
      batch_index = 0
      word_index = batch_or_word_index
    if batch_index < 0:
      batch_index = self._batch_size + batch_index
    if word_index < 0:
      word_index = self._seq_len + word_index
    span = self._encodings[batch_index].word_to_tokens(word_index, sequence_index)
    return TokenSpan(*span) if span is not None else None

  def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan:
    if not self._encodings:
      raise ValueError("token_to_chars() is not available when using Python based tokenizers")
    if token_index is not None:
      batch_index = batch_or_token_index
    else:
      batch_index = 0
      token_index = batch_or_token_index
    return CharSpan(*(self._encodings[batch_index].token_to_chars(token_index)))

  def char_to_token(
    self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0
  ) -> int:
    if not self._encodings:
      raise ValueError("char_to_token() is not available when using Python based tokenizers")
    if char_index is not None:
      batch_index = batch_or_char_index
    else:
      batch_index = 0
      char_index = batch_or_char_index
    return self._encodings[batch_index].char_to_token(char_index, sequence_index)

  def word_to_chars(
    self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
  ) -> CharSpan:
    if not self._encodings:
      raise ValueError("word_to_chars() is not available when using Python based tokenizers")
    if word_index is not None:
      batch_index = batch_or_word_index
    else:
      batch_index = 0
      word_index = batch_or_word_index
    return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index, sequence_index)))

  def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0) -> int:
    if not self._encodings:
      raise ValueError("char_to_word() is not available when using Python based tokenizers")
    if char_index is not None:
      batch_index = batch_or_char_index
    else:
      batch_index = 0
      char_index = batch_or_char_index
    return self._encodings[batch_index].char_to_word(char_index, sequence_index)

  def convert_to_tensors(
    self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False
  ):
    if tensor_type is None:
      return self

    # Convert to TensorType
    if not isinstance(tensor_type, TensorType):
      tensor_type = TensorType(tensor_type)

    # Get a function reference for the correct framework
    if tensor_type == TensorType.TENSORFLOW:
      if not is_tf_available():
        raise ImportError(
          "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
        )
      import tensorflow as tf

      as_tensor = tf.constant
      is_tensor = tf.is_tensor
    elif tensor_type == TensorType.PYTORCH:
      if not is_torch_available():
        raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
      import torch

      as_tensor = torch.tensor
      is_tensor = torch.is_tensor
    elif tensor_type == TensorType.JAX:
      if not is_flax_available():
        raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
      import jax.numpy as jnp  # noqa: F811

      as_tensor = jnp.array
      is_tensor = _is_jax
    else:
      as_tensor = np.asarray
      is_tensor = _is_numpy
    # (mfuntowicz: This code is unreachable)
    # else:
    #     raise ImportError(
    #         "Unable to convert output to tensors format {}".format(tensor_type)
    #     )

    # Do the tensor conversion in batch
    for key, value in self.items():
      try:
        if prepend_batch_axis:
          value = [value]

        if not is_tensor(value):
          tensor = as_tensor(value)

          # Removing this for now in favor of controlling the shape with `prepend_batch_axis`
          # # at-least2d
          # if tensor.ndim > 2:
          #     tensor = tensor.squeeze(0)
          # elif tensor.ndim < 2:
          #     tensor = tensor[None, :]

          self[key] = tensor
      except:  # noqa E722
        if key == "overflowing_tokens":
          raise ValueError(
            "Unable to create tensor returning overflowing tokens of different lengths. "
            "Please see if a fast version of this tokenizer is available to have this feature available."
          )
        raise ValueError(
          "Unable to create tensor, you should probably activate truncation and/or padding "
          "with 'padding=True' 'truncation=True' to have batched tensors with the same length."
        )

    return self

  def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
    # This check catches things like APEX blindly calling "to" on all inputs to a module
    # Otherwise it passes the casts down and casts the LongTensor containing the token idxs
    # into a HalfTensor
    if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
      self.data = {k: v.to(device=device) for k, v in self.data.items()}
    return self


class SpecialTokensMixin:
  SPECIAL_TOKENS_ATTRIBUTES = [
    "bos_token",
    "eos_token",
    "unk_token",
    "sep_token",
    "pad_token",
    "cls_token",
    "mask_token",
    "additional_special_tokens",
  ]

  def __init__(self, verbose=True, **kwargs):
    self._bos_token = None
    self._eos_token = None
    self._unk_token = None
    self._sep_token = None
    self._pad_token = None
    self._cls_token = None
    self._mask_token = None
    self._pad_token_type_id = 0
    self._additional_special_tokens = []
    self.verbose = verbose

    # We directly set the hidden value to allow initialization with special tokens
    # which are not yet in the vocabulary. Necessary for serialization/de-serialization
    # TODO clean this up at some point (probably by switching to fast tokenizers)
    for key, value in kwargs.items():
      if value is None:
        continue
      if key in self.SPECIAL_TOKENS_ATTRIBUTES:
        if key == "additional_special_tokens":
          assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple"
          assert all(isinstance(t, str) for t in value), "One of the tokens is not a string"
          setattr(self, key, value)
        elif isinstance(value, (str, AddedToken)):
          setattr(self, key, value)
        else:
          raise TypeError(
            "special token {} has to be either str or AddedToken but got: {}".format(key, type(value))
          )

  def sanitize_special_tokens(self) -> int:
    return self.add_tokens(self.all_special_tokens_extended, special_tokens=True)

  def add_special_tokens(self, special_tokens_dict: Dict[str, Union[str, AddedToken]]) -> int:
    if not special_tokens_dict:
      return 0

    added_tokens = 0
    for key, value in special_tokens_dict.items():
      assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token"

      setattr(self, key, value)

      if key == "additional_special_tokens":
        assert isinstance(value, (list, tuple)) and all(
          isinstance(t, (str, AddedToken)) for t in value
        ), f"Tokens {value} for key {key} should all be str or AddedToken instances"
        added_tokens += self.add_tokens(value, special_tokens=True)
      else:
        assert isinstance(
          value, (str, AddedToken)
        ), f"Token {value} for key {key} should be a str or an AddedToken instance"
        added_tokens += self.add_tokens([value], special_tokens=True)

    return added_tokens

  def add_tokens(
    self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False
  ) -> int:
    if not new_tokens:
      return 0

    if not isinstance(new_tokens, (list, tuple)):
      new_tokens = [new_tokens]

    return self._add_tokens(new_tokens, special_tokens=special_tokens)

  def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
    raise NotImplementedError

  @property
  def bos_token(self) -> str:
    if self._bos_token is None and self.verbose:
      return None
    return str(self._bos_token)

  @property
  def eos_token(self) -> str:
    if self._eos_token is None and self.verbose:
      return None
    return str(self._eos_token)

  @property
  def unk_token(self) -> str:
    if self._unk_token is None and self.verbose:
      return None
    return str(self._unk_token)

  @property
  def sep_token(self) -> str:
    if self._sep_token is None and self.verbose:
      return None
    return str(self._sep_token)

  @property
  def pad_token(self) -> str:
    if self._pad_token is None and self.verbose:
      return None
    return str(self._pad_token)

  @property
  def cls_token(self) -> str:
    if self._cls_token is None and self.verbose:
      return None
    return str(self._cls_token)

  @property
  def mask_token(self) -> str:
    if self._mask_token is None and self.verbose:
      return None
    return str(self._mask_token)

  @property
  def additional_special_tokens(self) -> List[str]:
    if self._additional_special_tokens is None and self.verbose:
      return None
    return [str(tok) for tok in self._additional_special_tokens]

  @bos_token.setter
  def bos_token(self, value):
    self._bos_token = value

  @eos_token.setter
  def eos_token(self, value):
    self._eos_token = value

  @unk_token.setter
  def unk_token(self, value):
    self._unk_token = value

  @sep_token.setter
  def sep_token(self, value):
    self._sep_token = value

  @pad_token.setter
  def pad_token(self, value):
    self._pad_token = value

  @cls_token.setter
  def cls_token(self, value):
    self._cls_token = value

  @mask_token.setter
  def mask_token(self, value):
    self._mask_token = value

  @additional_special_tokens.setter
  def additional_special_tokens(self, value):
    self._additional_special_tokens = value

  @property
  def bos_token_id(self) -> Optional[int]:
    if self._bos_token is None:
      return None
    return self.convert_tokens_to_ids(self.bos_token)

  @property
  def eos_token_id(self) -> Optional[int]:
    if self._eos_token is None:
      return None
    return self.convert_tokens_to_ids(self.eos_token)

  @property
  def unk_token_id(self) -> Optional[int]:
    if self._unk_token is None:
      return None
    return self.convert_tokens_to_ids(self.unk_token)

  @property
  def sep_token_id(self) -> Optional[int]:
    if self._sep_token is None:
      return None
    return self.convert_tokens_to_ids(self.sep_token)

  @property
  def pad_token_id(self) -> Optional[int]:
    if self._pad_token is None:
      return None
    return self.convert_tokens_to_ids(self.pad_token)

  @property
  def pad_token_type_id(self) -> int:
    return self._pad_token_type_id

  @property
  def cls_token_id(self) -> Optional[int]:
    if self._cls_token is None:
      return None
    return self.convert_tokens_to_ids(self.cls_token)

  @property
  def mask_token_id(self) -> Optional[int]:
    if self._mask_token is None:
      return None
    return self.convert_tokens_to_ids(self.mask_token)

  @property
  def additional_special_tokens_ids(self) -> List[int]:
    return self.convert_tokens_to_ids(self.additional_special_tokens)

  @bos_token_id.setter
  def bos_token_id(self, value):
    self._bos_token = self.convert_tokens_to_ids(value)

  @eos_token_id.setter
  def eos_token_id(self, value):
    self._eos_token = self.convert_tokens_to_ids(value)

  @unk_token_id.setter
  def unk_token_id(self, value):
    self._unk_token = self.convert_tokens_to_ids(value)

  @sep_token_id.setter
  def sep_token_id(self, value):
    self._sep_token = self.convert_tokens_to_ids(value)

  @pad_token_id.setter
  def pad_token_id(self, value):
    self._pad_token = self.convert_tokens_to_ids(value)

  @cls_token_id.setter
  def cls_token_id(self, value):
    self._cls_token = self.convert_tokens_to_ids(value)

  @mask_token_id.setter
  def mask_token_id(self, value):
    self._mask_token = self.convert_tokens_to_ids(value)

  @additional_special_tokens_ids.setter
  def additional_special_tokens_ids(self, values):
    self._additional_special_tokens = [self.convert_tokens_to_ids(value) for value in values]

  @property
  def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]:
    set_attr = {}
    for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
      attr_value = getattr(self, "_" + attr)
      if attr_value:
        set_attr[attr] = str(attr_value)
    return set_attr

  @property
  def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]:
    set_attr = {}
    for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
      attr_value = getattr(self, "_" + attr)
      if attr_value:
        set_attr[attr] = attr_value
    return set_attr

  @property
  def all_special_tokens(self) -> List[str]:
    all_toks = [str(s) for s in self.all_special_tokens_extended]
    return all_toks

  @property
  def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]:
    all_toks = []
    set_attr = self.special_tokens_map_extended
    for attr_value in set_attr.values():
      all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value])
    all_toks = list(OrderedDict.fromkeys(all_toks))
    return all_toks

  @property
  def all_special_ids(self) -> List[int]:
    all_toks = self.all_special_tokens
    all_ids = self.convert_tokens_to_ids(all_toks)
    return all_ids


class PreTrainedTokenizerBase(SpecialTokensMixin):
  vocab_files_names: Dict[str, str] = {}
  pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {}
  pretrained_init_configuration: Dict[str, Dict[str, Any]] = {}
  max_model_input_sizes: Dict[str, Optional[int]] = {}

  # first name has to correspond to main model input name
  # to make sure `tokenizer.pad(...)` works correctly
  model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"]
  padding_side: str = "right"
  slow_tokenizer_class = None

  def __init__(self, **kwargs):
    # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
    self.init_inputs = ()
    self.init_kwargs = copy.deepcopy(kwargs)
    self.name_or_path = kwargs.pop("name_or_path", "")

    # For backward compatibility we fallback to set model_max_length from max_len if provided
    model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None))
    self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER

    # Padding side is right by default and overridden in subclasses. If specified in the kwargs, it is changed.
    self.padding_side = kwargs.pop("padding_side", self.padding_side)
    assert self.padding_side in [
      "right",
      "left",
    ], f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}"
    self.model_input_names = kwargs.pop("model_input_names", self.model_input_names)

    self.deprecation_warnings = (
      {}
    )  # Use to store when we have already noticed a deprecation warning (avoid overlogging).

    super().__init__(**kwargs)

  @property
  def max_len_single_sentence(self) -> int:
    return self.model_max_length - self.num_special_tokens_to_add(pair=False)

  @property
  def max_len_sentences_pair(self) -> int:
    return self.model_max_length - self.num_special_tokens_to_add(pair=True)

  @max_len_single_sentence.setter
  def max_len_single_sentence(self, value) -> int:
    # For backward compatibility, allow to try to setup 'max_len_single_sentence'.
    if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose:
      self.deprecation_warnings["max_len_single_sentence"] = True
    else:
      raise ValueError(
        "Setting 'max_len_single_sentence' is now deprecated. " "This value is automatically set up."
      )

  @max_len_sentences_pair.setter
  def max_len_sentences_pair(self, value) -> int:
    # For backward compatibility, allow to try to setup 'max_len_sentences_pair'.
    if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose:
      self.deprecation_warnings["max_len_sentences_pair"] = True
    else:
      raise ValueError(
        "Setting 'max_len_sentences_pair' is now deprecated. " "This value is automatically set up."
      )

  def __repr__(self) -> str:
    return (
      f"{'PreTrainedTokenizerFast' if self.is_fast else 'PreTrainedTokenizer'}(name_or_path='{self.name_or_path}', "
      f"vocab_size={self.vocab_size}, model_max_len={self.model_max_length}, is_fast={self.is_fast}, "
      f"padding_side='{self.padding_side}', special_tokens={self.special_tokens_map_extended})"
    )

  def get_vocab(self) -> Dict[str, int]:
    raise NotImplementedError()

  @classmethod
  def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs):
    cache_dir = kwargs.pop("cache_dir", None)
    force_download = kwargs.pop("force_download", False)
    resume_download = kwargs.pop("resume_download", False)
    proxies = kwargs.pop("proxies", None)
    local_files_only = kwargs.pop("local_files_only", False)
    use_auth_token = kwargs.pop("use_auth_token", None)
    revision = kwargs.pop("revision", None)
    subfolder = kwargs.pop("subfolder", None)

    s3_models = list(cls.max_model_input_sizes.keys())
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
    vocab_files = {}
    init_configuration = {}
    if pretrained_model_name_or_path in s3_models:
      # Get the vocabulary from AWS S3 bucket
      for file_id, map_list in cls.pretrained_vocab_files_map.items():
        vocab_files[file_id] = map_list[pretrained_model_name_or_path]
      if (
        cls.pretrained_init_configuration
        and pretrained_model_name_or_path in cls.pretrained_init_configuration
      ):
        init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path].copy()
    else:
      # Get the vocabulary from local files
      if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
        if len(cls.vocab_files_names) > 1:
          raise ValueError(
            "Calling {}.from_pretrained() with the path to a single file or url is not supported."
            "Use a model identifier or the path to a directory instead.".format(cls.__name__)
          )
        file_id = list(cls.vocab_files_names.keys())[0]
        vocab_files[file_id] = pretrained_model_name_or_path
      else:
        # At this point pretrained_model_name_or_path is either a directory or a model identifier name
        additional_files_names = {
          "added_tokens_file": ADDED_TOKENS_FILE,
          "special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE,
          "tokenizer_config_file": TOKENIZER_CONFIG_FILE,
          "tokenizer_file": FULL_TOKENIZER_FILE,
        }
        # Look for the tokenizer files
        for file_id, file_name in {**cls.vocab_files_names, **additional_files_names}.items():
          if os.path.isdir(pretrained_model_name_or_path):
            if subfolder is not None:
              full_file_name = os.path.join(pretrained_model_name_or_path, subfolder, file_name)
            else:
              full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
            if not os.path.exists(full_file_name):
              full_file_name = None
          else:
            full_file_name = hf_bucket_url(
              pretrained_model_name_or_path,
              filename=file_name,
              subfolder=subfolder,
              revision=revision,
              mirror=None,
            )

          vocab_files[file_id] = full_file_name

    # Get files from url, cache, or disk depending on the case
    resolved_vocab_files = {}
    unresolved_files = []
    for file_id, file_path in vocab_files.items():
      if file_path is None:
        resolved_vocab_files[file_id] = None
      else:
        try:
          try:
            resolved_vocab_files[file_id] = cached_path(
              file_path,
              cache_dir=cache_dir,
              force_download=force_download,
              proxies=proxies,
              resume_download=resume_download,
              local_files_only=local_files_only,
              use_auth_token=use_auth_token,
            )
          except FileNotFoundError as error:
            if local_files_only:
              unresolved_files.append(file_id)
            else:
              raise error

        except requests.exceptions.HTTPError as err:
          if "404 Client Error" in str(err):
            resolved_vocab_files[file_id] = None
          else:
            raise err

    if all(full_file_name is None for full_file_name in resolved_vocab_files.values()):
      msg = (
        f"Can't load tokenizer for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
        f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
        f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing relevant tokenizer files\n\n"
      )
      raise EnvironmentError(msg)

    for file_id, file_path in vocab_files.items():
      if file_id not in resolved_vocab_files:
        continue

    return cls._from_pretrained(
      resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, **kwargs
    )

  @classmethod
  def _from_pretrained(
    cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, **kwargs
  ):
    # We instantiate fast tokenizers based on a slow tokenizer if we don't have access to the tokenizer.json
    # file or if `from_slow` is set to True.
    from_slow = kwargs.get("from_slow", False)
    has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None
    if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None:
      slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained(
        copy.deepcopy(resolved_vocab_files),
        pretrained_model_name_or_path,
        copy.deepcopy(init_configuration),
        *init_inputs,
        **(copy.deepcopy(kwargs)),
      )
    else:
      slow_tokenizer = None

    # Prepare tokenizer initialization kwargs
    # Did we saved some inputs and kwargs to reload ?
    tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None)
    if tokenizer_config_file is not None:
      with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle:
        init_kwargs = json.load(tokenizer_config_handle)
      saved_init_inputs = init_kwargs.pop("init_inputs", ())
      if not init_inputs:
        init_inputs = saved_init_inputs
    else:
      init_kwargs = init_configuration

    # Update with newly provided kwargs
    init_kwargs.update(kwargs)

    # Convert AddedTokens serialized as dict to class instances
    def convert_added_tokens(obj: Union[AddedToken, Any]):
      if isinstance(obj, dict) and "__type" in obj and obj["__type"] == "AddedToken":
        obj.pop("__type")
        return AddedToken(**obj)
      elif isinstance(obj, (list, tuple)):
        return list(convert_added_tokens(o) for o in obj)
      elif isinstance(obj, dict):
        return {k: convert_added_tokens(v) for k, v in obj.items()}
      return obj

    init_kwargs = convert_added_tokens(init_kwargs)

    # Set max length if needed
    if pretrained_model_name_or_path in cls.max_model_input_sizes:
      # if we're using a pretrained model, ensure the tokenizer
      # wont index sequences longer than the number of positional embeddings
      model_max_length = cls.max_model_input_sizes[pretrained_model_name_or_path]
      if model_max_length is not None and isinstance(model_max_length, (int, float)):
        init_kwargs["model_max_length"] = min(init_kwargs.get("model_max_length", int(1e30)), model_max_length)

    # Merge resolved_vocab_files arguments in init_kwargs.
    added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None)
    for args_name, file_path in resolved_vocab_files.items():
      if args_name not in init_kwargs:
        init_kwargs[args_name] = file_path

    if slow_tokenizer is not None:
      init_kwargs["__slow_tokenizer"] = slow_tokenizer

    init_kwargs["name_or_path"] = pretrained_model_name_or_path

    # Instantiate tokenizer.
    try:
      tokenizer = cls(*init_inputs, **init_kwargs)
    except OSError:
      raise OSError(
        "Unable to load vocabulary from file. "
        "Please check that the provided vocabulary is accessible and not corrupted."
      )

    # Save inputs and kwargs for saving and re-loading with ``save_pretrained``
    # Removed: Now done at the base class level
    # tokenizer.init_inputs = init_inputs
    # tokenizer.init_kwargs = init_kwargs

    # If there is a complementary special token map, load it
    special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None)
    if special_tokens_map_file is not None:
      with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle:
        special_tokens_map = json.load(special_tokens_map_handle)
      for key, value in special_tokens_map.items():
        if isinstance(value, dict):
          value = AddedToken(**value)
        elif isinstance(value, list):
          value = [AddedToken(**token) if isinstance(token, dict) else token for token in value]
        setattr(tokenizer, key, value)

    # Add supplementary tokens.
    special_tokens = tokenizer.all_special_tokens
    if added_tokens_file is not None:
      with open(added_tokens_file, encoding="utf-8") as added_tokens_handle:
        added_tok_encoder = json.load(added_tokens_handle)

      # Sort added tokens by index
      added_tok_encoder_sorted = list(sorted(added_tok_encoder.items(), key=lambda x: x[1]))

      for token, index in added_tok_encoder_sorted:
        assert index == len(tokenizer), (
          f"Non-consecutive added token '{token}' found. "
          f"Should have index {len(tokenizer)} but has index {index} in saved vocabulary."
        )
        tokenizer.add_tokens(token, special_tokens=bool(token in special_tokens))

    # Check all our special tokens are registered as "no split" token (we don't cut them) and are in the vocab
    added_tokens = tokenizer.sanitize_special_tokens()

    return tokenizer

  def save_pretrained(
    self,
    save_directory: Union[str, os.PathLike],
    legacy_format: bool = True,
    filename_prefix: Optional[str] = None,
  ) -> Tuple[str]:
    if os.path.isfile(save_directory):
      return
    os.makedirs(save_directory, exist_ok=True)

    special_tokens_map_file = os.path.join(
      save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
    )
    tokenizer_config_file = os.path.join(
      save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
    )

    tokenizer_config = copy.deepcopy(self.init_kwargs)
    if len(self.init_inputs) > 0:
      tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
    for file_id in self.vocab_files_names.keys():
      tokenizer_config.pop(file_id, None)

    # Sanitize AddedTokens
    def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True):
      if isinstance(obj, AddedToken):
        out = obj.__getstate__()
        if add_type_field:
          out["__type"] = "AddedToken"
        return out
      elif isinstance(obj, (list, tuple)):
        return list(convert_added_tokens(o, add_type_field=add_type_field) for o in obj)
      elif isinstance(obj, dict):
        return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()}
      return obj

    # add_type_field=True to allow dicts in the kwargs / differentiate from AddedToken serialization
    tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True)
    with open(tokenizer_config_file, "w", encoding="utf-8") as f:
      f.write(json.dumps(tokenizer_config, ensure_ascii=False))

    # Sanitize AddedTokens in special_tokens_map
    write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False)
    with open(special_tokens_map_file, "w", encoding="utf-8") as f:
      f.write(json.dumps(write_dict, ensure_ascii=False))

    file_names = (tokenizer_config_file, special_tokens_map_file)

    return self._save_pretrained(
      save_directory=save_directory,
      file_names=file_names,
      legacy_format=legacy_format,
      filename_prefix=filename_prefix,
    )

  def _save_pretrained(
    self,
    save_directory: Union[str, os.PathLike],
    file_names: Tuple[str],
    legacy_format: bool = True,
    filename_prefix: Optional[str] = None,
  ) -> Tuple[str]:
    if not legacy_format:
      raise ValueError(
        "Only fast tokenizers (instances of PretrainedTokenizerFast) can be saved in non legacy format."
      )

    save_directory = str(save_directory)

    added_tokens_file = os.path.join(
      save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE
    )
    added_vocab = self.get_added_vocab()
    if added_vocab:
      with open(added_tokens_file, "w", encoding="utf-8") as f:
        out_str = json.dumps(added_vocab, ensure_ascii=False)
        f.write(out_str)

    vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix)

    return file_names + vocab_files + (added_tokens_file,)

  def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
    raise NotImplementedError

  def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
    raise NotImplementedError

  def encode(
    self,
    text: Union[TextInput, PreTokenizedInput, EncodedInput],
    text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
    add_special_tokens: bool = True,
    padding: Union[bool, str, PaddingStrategy] = False,
    truncation: Union[bool, str, TruncationStrategy] = False,
    max_length: Optional[int] = None,
    stride: int = 0,
    return_tensors: Optional[Union[str, TensorType]] = None,
    **kwargs
  ) -> List[int]:
    encoded_inputs = self.encode_plus(
      text,
      text_pair=text_pair,
      add_special_tokens=add_special_tokens,
      padding=padding,
      truncation=truncation,
      max_length=max_length,
      stride=stride,
      return_tensors=return_tensors,
      **kwargs,
    )

    return encoded_inputs["input_ids"]

  def num_special_tokens_to_add(self, pair: bool = False) -> int:
    raise NotImplementedError

  def _get_padding_truncation_strategies(
    self, padding=False, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
  ):
    old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
    old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)

    # Backward compatibility for previous behavior, maybe we should deprecate it:
    # If you only set max_length, it activates truncation for max_length
    if max_length is not None and padding is False and truncation is False:
      if verbose:
        self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
      truncation = "longest_first"

    # Get padding strategy
    if padding is False and old_pad_to_max_length:
      if max_length is None:
        padding_strategy = PaddingStrategy.LONGEST
      else:
        padding_strategy = PaddingStrategy.MAX_LENGTH
    elif padding is not False:
      if padding is True:
        padding_strategy = PaddingStrategy.LONGEST  # Default to pad to the longest sequence in the batch
      elif not isinstance(padding, PaddingStrategy):
        padding_strategy = PaddingStrategy(padding)
      elif isinstance(padding, PaddingStrategy):
        padding_strategy = padding
    else:
      padding_strategy = PaddingStrategy.DO_NOT_PAD

    # Get truncation strategy
    if truncation is False and old_truncation_strategy != "do_not_truncate":
      truncation_strategy = TruncationStrategy(old_truncation_strategy)
    elif truncation is not False:
      if truncation is True:
        truncation_strategy = (
          TruncationStrategy.LONGEST_FIRST
        )  # Default to truncate the longest sequences in pairs of inputs
      elif not isinstance(truncation, TruncationStrategy):
        truncation_strategy = TruncationStrategy(truncation)
      elif isinstance(truncation, TruncationStrategy):
        truncation_strategy = truncation
    else:
      truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE

    # Set max length if needed
    if max_length is None:
      if padding_strategy == PaddingStrategy.MAX_LENGTH:
        if self.model_max_length > LARGE_INTEGER:
          if verbose:
            self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
          padding_strategy = PaddingStrategy.DO_NOT_PAD
        else:
          max_length = self.model_max_length

      if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
        if self.model_max_length > LARGE_INTEGER:
          if verbose:
            self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True
          truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
        else:
          max_length = self.model_max_length

    # Test if we have a padding token
    if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0):
      raise ValueError(
        "Asking to pad but the tokenizer does not have a padding token. "
        "Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
        "or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
      )

    # Check that we will truncate to a multiple of pad_to_multiple_of if both are provided
    if (
      truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
      and padding_strategy != PaddingStrategy.DO_NOT_PAD
      and pad_to_multiple_of is not None
      and max_length is not None
      and (max_length % pad_to_multiple_of != 0)
    ):
      raise ValueError(
        f"Truncation and padding are both activated but "
        f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
      )

    return padding_strategy, truncation_strategy, max_length, kwargs

  def __call__(
    self,
    text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
    text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
    add_special_tokens: bool = True,
    padding: Union[bool, str, PaddingStrategy] = False,
    truncation: Union[bool, str, TruncationStrategy] = False,
    max_length: Optional[int] = None,
    stride: int = 0,
    is_split_into_words: bool = False,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    **kwargs
  ) -> BatchEncoding:
    # Input type checking for clearer error
    assert isinstance(text, str) or (
      isinstance(text, (list, tuple))
      and (
        len(text) == 0
        or (
          isinstance(text[0], str)
          or (isinstance(text[0], (list, tuple)) and (len(text[0]) == 0 or isinstance(text[0][0], str)))
        )
      )
    ), (
      "text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) "
      "or `List[List[str]]` (batch of pretokenized examples)."
    )

    assert (
      text_pair is None
      or isinstance(text_pair, str)
      or (
        isinstance(text_pair, (list, tuple))
        and (
          len(text_pair) == 0
          or (
            isinstance(text_pair[0], str)
            or (
              isinstance(text_pair[0], (list, tuple))
              and (len(text_pair[0]) == 0 or isinstance(text_pair[0][0], str))
            )
          )
        )
      )
    ), (
      "text_pair input must of type `str` (single example), `List[str]` (batch or single pretokenized example) "
      "or `List[List[str]]` (batch of pretokenized examples)."
    )

    is_batched = bool(
      (not is_split_into_words and isinstance(text, (list, tuple)))
      or (
        is_split_into_words and isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
      )
    )

    if is_batched:
      batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
      return self.batch_encode_plus(
        batch_text_or_text_pairs=batch_text_or_text_pairs,
        add_special_tokens=add_special_tokens,
        padding=padding,
        truncation=truncation,
        max_length=max_length,
        stride=stride,
        is_split_into_words=is_split_into_words,
        pad_to_multiple_of=pad_to_multiple_of,
        return_tensors=return_tensors,
        return_token_type_ids=return_token_type_ids,
        return_attention_mask=return_attention_mask,
        return_overflowing_tokens=return_overflowing_tokens,
        return_special_tokens_mask=return_special_tokens_mask,
        return_offsets_mapping=return_offsets_mapping,
        return_length=return_length,
        verbose=verbose,
        **kwargs,
      )
    else:
      return self.encode_plus(
        text=text,
        text_pair=text_pair,
        add_special_tokens=add_special_tokens,
        padding=padding,
        truncation=truncation,
        max_length=max_length,
        stride=stride,
        is_split_into_words=is_split_into_words,
        pad_to_multiple_of=pad_to_multiple_of,
        return_tensors=return_tensors,
        return_token_type_ids=return_token_type_ids,
        return_attention_mask=return_attention_mask,
        return_overflowing_tokens=return_overflowing_tokens,
        return_special_tokens_mask=return_special_tokens_mask,
        return_offsets_mapping=return_offsets_mapping,
        return_length=return_length,
        verbose=verbose,
        **kwargs,
      )

  def encode_plus(
    self,
    text: Union[TextInput, PreTokenizedInput, EncodedInput],
    text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
    add_special_tokens: bool = True,
    padding: Union[bool, str, PaddingStrategy] = False,
    truncation: Union[bool, str, TruncationStrategy] = False,
    max_length: Optional[int] = None,
    stride: int = 0,
    is_split_into_words: bool = False,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    **kwargs
  ) -> BatchEncoding:
    # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
    padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
      padding=padding,
      truncation=truncation,
      max_length=max_length,
      pad_to_multiple_of=pad_to_multiple_of,
      verbose=verbose,
      **kwargs,
    )

    return self._encode_plus(
      text=text,
      text_pair=text_pair,
      add_special_tokens=add_special_tokens,
      padding_strategy=padding_strategy,
      truncation_strategy=truncation_strategy,
      max_length=max_length,
      stride=stride,
      is_split_into_words=is_split_into_words,
      pad_to_multiple_of=pad_to_multiple_of,
      return_tensors=return_tensors,
      return_token_type_ids=return_token_type_ids,
      return_attention_mask=return_attention_mask,
      return_overflowing_tokens=return_overflowing_tokens,
      return_special_tokens_mask=return_special_tokens_mask,
      return_offsets_mapping=return_offsets_mapping,
      return_length=return_length,
      verbose=verbose,
      **kwargs,
    )

  def _encode_plus(
    self,
    text: Union[TextInput, PreTokenizedInput, EncodedInput],
    text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
    add_special_tokens: bool = True,
    padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
    truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
    max_length: Optional[int] = None,
    stride: int = 0,
    is_split_into_words: bool = False,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    **kwargs
  ) -> BatchEncoding:
    raise NotImplementedError

  def batch_encode_plus(
    self,
    batch_text_or_text_pairs: Union[
      List[TextInput],
      List[TextInputPair],
      List[PreTokenizedInput],
      List[PreTokenizedInputPair],
      List[EncodedInput],
      List[EncodedInputPair],
    ],
    add_special_tokens: bool = True,
    padding: Union[bool, str, PaddingStrategy] = False,
    truncation: Union[bool, str, TruncationStrategy] = False,
    max_length: Optional[int] = None,
    stride: int = 0,
    is_split_into_words: bool = False,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    **kwargs
  ) -> BatchEncoding:
    # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
    padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
      padding=padding,
      truncation=truncation,
      max_length=max_length,
      pad_to_multiple_of=pad_to_multiple_of,
      verbose=verbose,
      **kwargs,
    )

    return self._batch_encode_plus(
      batch_text_or_text_pairs=batch_text_or_text_pairs,
      add_special_tokens=add_special_tokens,
      padding_strategy=padding_strategy,
      truncation_strategy=truncation_strategy,
      max_length=max_length,
      stride=stride,
      is_split_into_words=is_split_into_words,
      pad_to_multiple_of=pad_to_multiple_of,
      return_tensors=return_tensors,
      return_token_type_ids=return_token_type_ids,
      return_attention_mask=return_attention_mask,
      return_overflowing_tokens=return_overflowing_tokens,
      return_special_tokens_mask=return_special_tokens_mask,
      return_offsets_mapping=return_offsets_mapping,
      return_length=return_length,
      verbose=verbose,
      **kwargs,
    )

  def _batch_encode_plus(
    self,
    batch_text_or_text_pairs: Union[
      List[TextInput],
      List[TextInputPair],
      List[PreTokenizedInput],
      List[PreTokenizedInputPair],
      List[EncodedInput],
      List[EncodedInputPair],
    ],
    add_special_tokens: bool = True,
    padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
    truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
    max_length: Optional[int] = None,
    stride: int = 0,
    is_split_into_words: bool = False,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    **kwargs
  ) -> BatchEncoding:
    raise NotImplementedError

  def pad(
    self,
    encoded_inputs: Union[
      BatchEncoding,
      List[BatchEncoding],
      Dict[str, EncodedInput],
      Dict[str, List[EncodedInput]],
      List[Dict[str, EncodedInput]],
    ],
    padding: Union[bool, str, PaddingStrategy] = True,
    max_length: Optional[int] = None,
    pad_to_multiple_of: Optional[int] = None,
    return_attention_mask: Optional[bool] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    verbose: bool = True,
  ) -> BatchEncoding:
    # If we have a list of dicts, let's convert it in a dict of lists
    # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
    if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)):
      encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}

    # The model's main input name, usually `input_ids`, has be passed for padding
    if self.model_input_names[0] not in encoded_inputs:
      raise ValueError(
        "You should supply an encoding or a list of encodings to this method"
        f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
      )

    required_input = encoded_inputs[self.model_input_names[0]]

    if not required_input:
      if return_attention_mask:
        encoded_inputs["attention_mask"] = []
      return encoded_inputs

    # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
    # and rebuild them afterwards if no return_tensors is specified
    # Note that we lose the specific device the tensor may be on for PyTorch

    first_element = required_input[0]
    if isinstance(first_element, (list, tuple)):
      # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
      index = 0
      while len(required_input[index]) == 0:
        index += 1
      if index < len(required_input):
        first_element = required_input[index][0]
    # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
    if not isinstance(first_element, (int, list, tuple)):
      if is_tf_available() and _is_tensorflow(first_element):
        return_tensors = "tf" if return_tensors is None else return_tensors
      elif is_torch_available() and _is_torch(first_element):
        return_tensors = "pt" if return_tensors is None else return_tensors
      elif isinstance(first_element, np.ndarray):
        return_tensors = "np" if return_tensors is None else return_tensors
      else:
        raise ValueError(
          f"type of {first_element} unknown: {type(first_element)}. "
          f"Should be one of a python, numpy, pytorch or tensorflow object."
        )

      for key, value in encoded_inputs.items():
        encoded_inputs[key] = to_py_obj(value)

    # Convert padding_strategy in PaddingStrategy
    padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
      padding=padding, max_length=max_length, verbose=verbose
    )

    required_input = encoded_inputs[self.model_input_names[0]]
    if required_input and not isinstance(required_input[0], (list, tuple)):
      encoded_inputs = self._pad(
        encoded_inputs,
        max_length=max_length,
        padding_strategy=padding_strategy,
        pad_to_multiple_of=pad_to_multiple_of,
        return_attention_mask=return_attention_mask,
      )
      return BatchEncoding(encoded_inputs, tensor_type=return_tensors)

    batch_size = len(required_input)
    assert all(
      len(v) == batch_size for v in encoded_inputs.values()
    ), "Some items in the output dictionary have a different batch size than others."

    if padding_strategy == PaddingStrategy.LONGEST:
      max_length = max(len(inputs) for inputs in required_input)
      padding_strategy = PaddingStrategy.MAX_LENGTH

    batch_outputs = {}
    for i in range(batch_size):
      inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
      outputs = self._pad(
        inputs,
        max_length=max_length,
        padding_strategy=padding_strategy,
        pad_to_multiple_of=pad_to_multiple_of,
        return_attention_mask=return_attention_mask,
      )

      for key, value in outputs.items():
        if key not in batch_outputs:
          batch_outputs[key] = []
        batch_outputs[key].append(value)

    return BatchEncoding(batch_outputs, tensor_type=return_tensors)

  def create_token_type_ids_from_sequences(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
  ) -> List[int]:
    if token_ids_1 is None:
      return len(token_ids_0) * [0]
    return [0] * len(token_ids_0) + [1] * len(token_ids_1)

  def build_inputs_with_special_tokens(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
  ) -> List[int]:
    if token_ids_1 is None:
      return token_ids_0
    return token_ids_0 + token_ids_1

  def prepare_for_model(
    self,
    ids: List[int],
    pair_ids: Optional[List[int]] = None,
    add_special_tokens: bool = True,
    padding: Union[bool, str, PaddingStrategy] = False,
    truncation: Union[bool, str, TruncationStrategy] = False,
    max_length: Optional[int] = None,
    stride: int = 0,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    prepend_batch_axis: bool = False,
    **kwargs
  ) -> BatchEncoding:
    # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
    padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
      padding=padding,
      truncation=truncation,
      max_length=max_length,
      pad_to_multiple_of=pad_to_multiple_of,
      verbose=verbose,
      **kwargs,
    )

    pair = bool(pair_ids is not None)
    len_ids = len(ids)
    len_pair_ids = len(pair_ids) if pair else 0

    if return_token_type_ids and not add_special_tokens:
      raise ValueError(
        "Asking to return token_type_ids while setting add_special_tokens to False "
        "results in an undefined behavior. Please set add_special_tokens to True or "
        "set return_token_type_ids to None."
      )

    # Load from model defaults
    if return_token_type_ids is None:
      return_token_type_ids = "token_type_ids" in self.model_input_names
    if return_attention_mask is None:
      return_attention_mask = "attention_mask" in self.model_input_names

    encoded_inputs = {}

    # Compute the total size of the returned encodings
    total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)

    # Truncation: Handle max sequence length
    overflowing_tokens = []
    if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
      ids, pair_ids, overflowing_tokens = self.truncate_sequences(
        ids,
        pair_ids=pair_ids,
        num_tokens_to_remove=total_len - max_length,
        truncation_strategy=truncation_strategy,
        stride=stride,
      )

    if return_overflowing_tokens:
      encoded_inputs["overflowing_tokens"] = overflowing_tokens
      encoded_inputs["num_truncated_tokens"] = total_len - max_length

    # Add special tokens
    if add_special_tokens:
      sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
      token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
    else:
      sequence = ids + pair_ids if pair else ids
      token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])

    # Build output dictionary
    encoded_inputs["input_ids"] = sequence
    if return_token_type_ids:
      encoded_inputs["token_type_ids"] = token_type_ids
    if return_special_tokens_mask:
      if add_special_tokens:
        encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
      else:
        encoded_inputs["special_tokens_mask"] = [0] * len(sequence)

    # Check lengths
    self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)

    # Padding
    if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
      encoded_inputs = self.pad(
        encoded_inputs,
        max_length=max_length,
        padding=padding_strategy.value,
        pad_to_multiple_of=pad_to_multiple_of,
        return_attention_mask=return_attention_mask,
      )

    if return_length:
      encoded_inputs["length"] = len(encoded_inputs["input_ids"])

    batch_outputs = BatchEncoding(
      encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
    )

    return batch_outputs

  def truncate_sequences(
    self,
    ids: List[int],
    pair_ids: Optional[List[int]] = None,
    num_tokens_to_remove: int = 0,
    truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
    stride: int = 0,
  ) -> Tuple[List[int], List[int], List[int]]:
    if num_tokens_to_remove <= 0:
      return ids, pair_ids, []

    if not isinstance(truncation_strategy, TruncationStrategy):
      truncation_strategy = TruncationStrategy(truncation_strategy)

    overflowing_tokens = []
    if truncation_strategy == TruncationStrategy.LONGEST_FIRST:
      for _ in range(num_tokens_to_remove):
        if pair_ids is None or len(ids) > len(pair_ids):
          if not overflowing_tokens:
            window_len = min(len(ids), stride + 1)
          else:
            window_len = 1
          overflowing_tokens.extend(ids[-window_len:])
          ids = ids[:-1]
        else:
          if not overflowing_tokens:
            window_len = min(len(pair_ids), stride + 1)
          else:
            window_len = 1
          overflowing_tokens.extend(pair_ids[-window_len:])
          pair_ids = pair_ids[:-1]
    elif truncation_strategy == TruncationStrategy.ONLY_FIRST:
      if len(ids) > num_tokens_to_remove:
        window_len = min(len(ids), stride + num_tokens_to_remove)
        overflowing_tokens = ids[-window_len:]
        ids = ids[:-num_tokens_to_remove]
    elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
      if len(pair_ids) > num_tokens_to_remove:
        window_len = min(len(pair_ids), stride + num_tokens_to_remove)
        overflowing_tokens = pair_ids[-window_len:]
        pair_ids = pair_ids[:-num_tokens_to_remove]

    return (ids, pair_ids, overflowing_tokens)

  def _pad(
    self,
    encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
    max_length: Optional[int] = None,
    padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
    pad_to_multiple_of: Optional[int] = None,
    return_attention_mask: Optional[bool] = None,
  ) -> dict:
    # Load from model defaults
    if return_attention_mask is None:
      return_attention_mask = "attention_mask" in self.model_input_names

    required_input = encoded_inputs[self.model_input_names[0]]

    if padding_strategy == PaddingStrategy.LONGEST:
      max_length = len(required_input)

    if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
      max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

    needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length

    if needs_to_be_padded:
      difference = max_length - len(required_input)
      if self.padding_side == "right":
        if return_attention_mask:
          encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference
        if "token_type_ids" in encoded_inputs:
          encoded_inputs["token_type_ids"] = (
            encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
          )
        if "special_tokens_mask" in encoded_inputs:
          encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
        encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
      elif self.padding_side == "left":
        if return_attention_mask:
          encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
        if "token_type_ids" in encoded_inputs:
          encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
            "token_type_ids"
          ]
        if "special_tokens_mask" in encoded_inputs:
          encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
        encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
      else:
        raise ValueError("Invalid padding strategy:" + str(self.padding_side))
    elif return_attention_mask and "attention_mask" not in encoded_inputs:
      encoded_inputs["attention_mask"] = [1] * len(required_input)

    return encoded_inputs

  def convert_tokens_to_string(self, tokens: List[str]) -> str:
    raise NotImplementedError

  def batch_decode(
    self,
    sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
    skip_special_tokens: bool = False,
    clean_up_tokenization_spaces: bool = True,
    **kwargs
  ) -> List[str]:
    return [
      self.decode(
        seq,
        skip_special_tokens=skip_special_tokens,
        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
        **kwargs,
      )
      for seq in sequences
    ]

  def decode(
    self,
    token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
    skip_special_tokens: bool = False,
    clean_up_tokenization_spaces: bool = True,
    **kwargs
  ) -> str:
    # Convert inputs to python lists
    token_ids = to_py_obj(token_ids)

    return self._decode(
      token_ids=token_ids,
      skip_special_tokens=skip_special_tokens,
      clean_up_tokenization_spaces=clean_up_tokenization_spaces,
      **kwargs,
    )

  def _decode(
    self,
    token_ids: Union[int, List[int]],
    skip_special_tokens: bool = False,
    clean_up_tokenization_spaces: bool = True,
    **kwargs
  ) -> str:
    raise NotImplementedError

  def get_special_tokens_mask(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
  ) -> List[int]:
    assert already_has_special_tokens and token_ids_1 is None, (
      "You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
      "Please use a slow (full python) tokenizer to activate this argument."
      "Or set `return_special_tokens_mask=True` when calling the encoding method "
      "to get the special tokens mask in any tokenizer. "
    )

    all_special_ids = self.all_special_ids  # cache the property

    special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0]

    return special_tokens_mask

  @staticmethod
  def clean_up_tokenization(out_string: str) -> str:
    """
    Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms.
    Args:
        out_string (:obj:`str`): The text to clean up.
    Returns:
        :obj:`str`: The cleaned-up string.
    """
    out_string = (
      out_string.replace(" .", ".")
        .replace(" ?", "?")
        .replace(" !", "!")
        .replace(" ,", ",")
        .replace(" ' ", "'")
        .replace(" n't", "n't")
        .replace(" 'm", "'m")
        .replace(" 's", "'s")
        .replace(" 've", "'ve")
        .replace(" 're", "'re")
    )
    return out_string

  def _eventual_warn_about_too_long_sequence(self, ids: List[int], max_length: Optional[int], verbose: bool):
    if max_length is None and len(ids) > self.model_max_length and verbose:
      self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True

  @contextmanager
  def as_target_tokenizer(self):
    yield

  def prepare_seq2seq_batch(
    self,
    src_texts: List[str],
    tgt_texts: Optional[List[str]] = None,
    max_length: Optional[int] = None,
    max_target_length: Optional[int] = None,
    padding: str = "longest",
    return_tensors: str = None,
    truncation: bool = True,
    **kwargs,
  ) -> BatchEncoding:
    # mBART-specific kwargs that should be ignored by other models.
    kwargs.pop("src_lang", None)
    kwargs.pop("tgt_lang", None)
    if max_length is None:
      max_length = self.model_max_length
    model_inputs = self(
      src_texts,
      add_special_tokens=True,
      return_tensors=return_tensors,
      max_length=max_length,
      padding=padding,
      truncation=truncation,
      **kwargs,
    )
    if tgt_texts is None:
      return model_inputs
    # Process tgt_texts
    if max_target_length is None:
      max_target_length = max_length
    with self.as_target_tokenizer():
      labels = self(
        tgt_texts,
        add_special_tokens=True,
        return_tensors=return_tensors,
        padding=padding,
        max_length=max_target_length,
        truncation=truncation,
        **kwargs,
      )
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs


class PreTrainedTokenizer(PreTrainedTokenizerBase):
  def __init__(self, **kwargs):
    super().__init__(**kwargs)
    # Added tokens - We store this for both slow and fast tokenizers
    # until the serialization of Fast tokenizers is updated
    self.added_tokens_encoder: Dict[str, int] = {}
    self.added_tokens_decoder: Dict[int, str] = {}
    self.unique_no_split_tokens: List[str] = []

  @property
  def is_fast(self) -> bool:
    return False

  @property
  def vocab_size(self) -> int:
    """
    :obj:`int`: Size of the base vocabulary (without the added tokens).
    """
    raise NotImplementedError

  def get_added_vocab(self) -> Dict[str, int]:
    """
    Returns the added tokens in the vocabulary as a dictionary of token to index.
    Returns:
        :obj:`Dict[str, int]`: The added tokens.
    """
    return self.added_tokens_encoder

  def __len__(self):
    """
    Size of the full vocabulary with the added tokens.
    """
    return self.vocab_size + len(self.added_tokens_encoder)

  def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
    """
    Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to
    it with indices starting from length of the current vocabulary.
    Args:
        new_tokens (:obj:`List[str]`or :obj:`List[tokenizers.AddedToken]`):
            Token(s) to add in vocabulary. A token is only added if it's not already in the vocabulary (tested by
            checking if the tokenizer assign the index of the ``unk_token`` to them).
        special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the tokens should be added as special tokens.
    Returns:
        :obj:`int`: The number of tokens actually added to the vocabulary.
    Examples::
        # Let's see how to increase the vocabulary of Bert model and tokenizer
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
        num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
        print('We have added', num_added_toks, 'tokens')
        # Note: resize_token_embeddings expects to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
        model.resize_token_embeddings(len(tokenizer))
    """
    new_tokens = [str(tok) for tok in new_tokens]

    tokens_to_add = []
    for token in new_tokens:
      assert isinstance(token, str)
      if not special_tokens and hasattr(self, "do_lower_case") and self.do_lower_case:
        token = token.lower()
      if (
        token != self.unk_token
        and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token)
        and token not in tokens_to_add
      ):
        tokens_to_add.append(token)

    added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add))
    added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
    self.added_tokens_encoder.update(added_tok_encoder)
    self.added_tokens_decoder.update(added_tok_decoder)

    # Make sure we don't split on any special tokens (even they were already in the vocab before e.g. for Albert)
    if special_tokens:
      self.unique_no_split_tokens = sorted(set(self.unique_no_split_tokens).union(set(new_tokens)))
    else:
      # Or on the newly added tokens
      self.unique_no_split_tokens = sorted(set(self.unique_no_split_tokens).union(set(tokens_to_add)))

    return len(tokens_to_add)

  def num_special_tokens_to_add(self, pair: bool = False) -> int:
    """
    Returns the number of added tokens when encoding a sequence with special tokens.
    .. note::
        This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not
        put this inside your training loop.
    Args:
        pair (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether the number of added tokens should be computed in the case of a sequence pair or a single
            sequence.
    Returns:
        :obj:`int`: Number of special tokens added to sequences.
    """
    token_ids_0 = []
    token_ids_1 = []
    return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))

  def tokenize(self, text: TextInput, **kwargs) -> List[str]:
    """
    Converts a string in a sequence of tokens, using the tokenizer.
    Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
    (BPE/SentencePieces/WordPieces). Takes care of added tokens.
    Args:
        text (:obj:`str`):
            The sequence to be encoded.
        **kwargs (additional keyword arguments):
            Passed along to the model-specific ``prepare_for_tokenization`` preprocessing method.
    Returns:
        :obj:`List[str]`: The list of tokens.
    """
    # Simple mapping string => AddedToken for special tokens with specific tokenization behaviors
    all_special_tokens_extended = dict(
      (str(t), t) for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
    )

    text, kwargs = self.prepare_for_tokenization(text, **kwargs)

    # TODO: should this be in the base class?
    if hasattr(self, "do_lower_case") and self.do_lower_case:
      # convert non-special tokens to lowercase
      escaped_special_toks = [re.escape(s_tok) for s_tok in self.all_special_tokens]
      pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
      text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)

    def split_on_token(tok, text):
      result = []
      tok_extended = all_special_tokens_extended.get(tok, None)
      split_text = text.split(tok)
      full_word = ""
      for i, sub_text in enumerate(split_text):
        # AddedToken can control whitespace stripping around them.
        # We use them for GPT2 and Roberta to have different behavior depending on the special token
        # Cf. https://github.com/huggingface/transformers/pull/2778
        # and https://github.com/huggingface/transformers/issues/3788
        if isinstance(tok_extended, AddedToken):
          if tok_extended.single_word:
            # Try to avoid splitting on token
            if (
              i < len(split_text) - 1
              and not _is_end_of_word(sub_text)
              and not _is_start_of_word(split_text[i + 1])
            ):
              # Don't extract the special token
              full_word += sub_text + tok
            elif full_word:
              full_word += sub_text
              result.append(full_word)
              full_word = ""
              continue
          # Strip white spaces on the right
          if tok_extended.rstrip and i > 0:
            # A bit counter-intuitive but we strip the left of the string
            # since tok_extended.rstrip means the special token is eating all white spaces on its right
            sub_text = sub_text.lstrip()
          # Strip white spaces on the left
          if tok_extended.lstrip and i < len(split_text) - 1:
            sub_text = sub_text.rstrip()  # Opposite here
        else:
          # We strip left and right by default
          if i < len(split_text) - 1:
            sub_text = sub_text.rstrip()
          if i > 0:
            sub_text = sub_text.lstrip()

        if i == 0 and not sub_text:
          result.append(tok)
        elif i == len(split_text) - 1:
          if sub_text:
            result.append(sub_text)
          else:
            pass
        else:
          if sub_text:
            result.append(sub_text)
          result.append(tok)
      return result

    def split_on_tokens(tok_list, text):
      if not text.strip():
        return []
      if not tok_list:
        return self._tokenize(text)

      tokenized_text = []
      text_list = [text]
      for tok in tok_list:
        tokenized_text = []
        for sub_text in text_list:
          if sub_text not in self.unique_no_split_tokens:
            tokenized_text.extend(split_on_token(tok, sub_text))
          else:
            tokenized_text.append(sub_text)
        text_list = tokenized_text

      return list(
        itertools.chain.from_iterable(
          (
            self._tokenize(token) if token not in self.unique_no_split_tokens else [token]
            for token in tokenized_text
          )
        )
      )

    no_split_token = self.unique_no_split_tokens
    tokenized_text = split_on_tokens(no_split_token, text)
    return tokenized_text

  def _tokenize(self, text, **kwargs):
    """
    Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
    vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
    Do NOT take care of added tokens.
    """
    raise NotImplementedError

  def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
    """
    Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
    vocabulary.
    Args:
        tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s).
    Returns:
        :obj:`int` or :obj:`List[int]`: The token id or list of token ids.
    """
    if tokens is None:
      return None

    if isinstance(tokens, str):
      return self._convert_token_to_id_with_added_voc(tokens)

    ids = []
    for token in tokens:
      ids.append(self._convert_token_to_id_with_added_voc(token))
    return ids

  def _convert_token_to_id_with_added_voc(self, token):
    if token is None:
      return None

    if token in self.added_tokens_encoder:
      return self.added_tokens_encoder[token]
    return self._convert_token_to_id(token)

  def _convert_token_to_id(self, token):
    raise NotImplementedError

  def _encode_plus(
    self,
    text: Union[TextInput, PreTokenizedInput, EncodedInput],
    text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
    add_special_tokens: bool = True,
    padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
    truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
    max_length: Optional[int] = None,
    stride: int = 0,
    is_split_into_words: bool = False,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    **kwargs
  ) -> BatchEncoding:
    def get_input_ids(text):
      if isinstance(text, str):
        tokens = self.tokenize(text, **kwargs)
        return self.convert_tokens_to_ids(tokens)
      elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
        if is_split_into_words:
          tokens = list(
            itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
          )
          return self.convert_tokens_to_ids(tokens)
        else:
          return self.convert_tokens_to_ids(text)
      elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
        return text
      else:
        if is_split_into_words:
          raise ValueError(
            f"Input {text} is not valid. Should be a string or a list/tuple of strings when `is_split_into_words=True`."
          )
        else:
          raise ValueError(
            f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
          )

    if return_offsets_mapping:
      raise NotImplementedError(
        "return_offset_mapping is not available when using Python tokenizers."
        "To use this feature, change your tokenizer to one deriving from "
        "transformers.PreTrainedTokenizerFast."
        "More information on available tokenizers at "
        "https://github.com/huggingface/transformers/pull/2674"
      )

    first_ids = get_input_ids(text)
    second_ids = get_input_ids(text_pair) if text_pair is not None else None

    return self.prepare_for_model(
      first_ids,
      pair_ids=second_ids,
      add_special_tokens=add_special_tokens,
      padding=padding_strategy.value,
      truncation=truncation_strategy.value,
      max_length=max_length,
      stride=stride,
      pad_to_multiple_of=pad_to_multiple_of,
      return_tensors=return_tensors,
      prepend_batch_axis=True,
      return_attention_mask=return_attention_mask,
      return_token_type_ids=return_token_type_ids,
      return_overflowing_tokens=return_overflowing_tokens,
      return_special_tokens_mask=return_special_tokens_mask,
      return_length=return_length,
      verbose=verbose,
    )

  def _batch_encode_plus(
    self,
    batch_text_or_text_pairs: Union[
      List[TextInput],
      List[TextInputPair],
      List[PreTokenizedInput],
      List[PreTokenizedInputPair],
      List[EncodedInput],
      List[EncodedInputPair],
    ],
    add_special_tokens: bool = True,
    padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
    truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
    max_length: Optional[int] = None,
    stride: int = 0,
    is_split_into_words: bool = False,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[Union[str, TensorType]] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_offsets_mapping: bool = False,
    return_length: bool = False,
    verbose: bool = True,
    **kwargs
  ) -> BatchEncoding:
    def get_input_ids(text):
      if isinstance(text, str):
        tokens = self.tokenize(text, **kwargs)
        return self.convert_tokens_to_ids(tokens)
      elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
        if is_split_into_words:
          tokens = list(
            itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
          )
          return self.convert_tokens_to_ids(tokens)
        else:
          return self.convert_tokens_to_ids(text)
      elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
        return text
      else:
        raise ValueError(
          "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
        )

    if return_offsets_mapping:
      raise NotImplementedError(
        "return_offset_mapping is not available when using Python tokenizers."
        "To use this feature, change your tokenizer to one deriving from "
        "transformers.PreTrainedTokenizerFast."
      )

    input_ids = []
    for ids_or_pair_ids in batch_text_or_text_pairs:
      if not isinstance(ids_or_pair_ids, (list, tuple)):
        ids, pair_ids = ids_or_pair_ids, None
      elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)):
        ids, pair_ids = ids_or_pair_ids, None
      else:
        ids, pair_ids = ids_or_pair_ids

      first_ids = get_input_ids(ids)
      second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
      input_ids.append((first_ids, second_ids))

    batch_outputs = self._batch_prepare_for_model(
      input_ids,
      add_special_tokens=add_special_tokens,
      padding_strategy=padding_strategy,
      truncation_strategy=truncation_strategy,
      max_length=max_length,
      stride=stride,
      pad_to_multiple_of=pad_to_multiple_of,
      return_attention_mask=return_attention_mask,
      return_token_type_ids=return_token_type_ids,
      return_overflowing_tokens=return_overflowing_tokens,
      return_special_tokens_mask=return_special_tokens_mask,
      return_length=return_length,
      return_tensors=return_tensors,
      verbose=verbose,
    )

    return BatchEncoding(batch_outputs)

  def _batch_prepare_for_model(
    self,
    batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
    add_special_tokens: bool = True,
    padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
    truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
    max_length: Optional[int] = None,
    stride: int = 0,
    pad_to_multiple_of: Optional[int] = None,
    return_tensors: Optional[str] = None,
    return_token_type_ids: Optional[bool] = None,
    return_attention_mask: Optional[bool] = None,
    return_overflowing_tokens: bool = False,
    return_special_tokens_mask: bool = False,
    return_length: bool = False,
    verbose: bool = True,
  ) -> BatchEncoding:
    """
    Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
    adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
    manages a moving window (with user defined stride) for overflowing tokens
    Args:
        batch_ids_pairs: list of tokenized input ids or input ids pairs
    """

    batch_outputs = {}
    for first_ids, second_ids in batch_ids_pairs:
      outputs = self.prepare_for_model(
        first_ids,
        second_ids,
        add_special_tokens=add_special_tokens,
        padding=PaddingStrategy.DO_NOT_PAD.value,  # we pad in batch afterward
        truncation=truncation_strategy.value,
        max_length=max_length,
        stride=stride,
        pad_to_multiple_of=None,  # we pad in batch afterward
        return_attention_mask=False,  # we pad in batch afterward
        return_token_type_ids=return_token_type_ids,
        return_overflowing_tokens=return_overflowing_tokens,
        return_special_tokens_mask=return_special_tokens_mask,
        return_length=return_length,
        return_tensors=None,  # We convert the whole batch to tensors at the end
        prepend_batch_axis=False,
        verbose=verbose,
      )

      for key, value in outputs.items():
        if key not in batch_outputs:
          batch_outputs[key] = []
        batch_outputs[key].append(value)

    batch_outputs = self.pad(
      batch_outputs,
      padding=padding_strategy.value,
      max_length=max_length,
      pad_to_multiple_of=pad_to_multiple_of,
      return_attention_mask=return_attention_mask,
    )

    batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)

    return batch_outputs

  def prepare_for_tokenization(
    self, text: str, is_split_into_words: bool = False, **kwargs
  ) -> Tuple[str, Dict[str, Any]]:
    """
    Performs any necessary transformations before tokenization.
    This method should pop the arguments from kwargs and return the remaining :obj:`kwargs` as well. We test the
    :obj:`kwargs` at the end of the encoding process to be sure all the arguments have been used.
    Args:
        text (:obj:`str`):
            The text to prepare.
        is_split_into_words (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the text has been pretokenized.
        kwargs:
            Keyword arguments to use for the tokenization.
    Returns:
        :obj:`Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
    """
    return (text, kwargs)

  def get_special_tokens_mask(
    self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
  ) -> List[int]:
    """
    Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
    special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
    Args:
        token_ids_0 (:obj:`List[int]`):
            List of ids of the first sequence.
        token_ids_1 (:obj:`List[int]`, `optional`):
            List of ids of the second sequence.
        already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the token list is already formatted with special tokens for the model.
    Returns:
        A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
    """
    return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0))

  @overload
  def convert_ids_to_tokens(self, ids: int, skip_special_tokens: bool = False) -> str:
    ...

  @overload
  def convert_ids_to_tokens(self, ids: List[int], skip_special_tokens: bool = False) -> List[str]:
    ...

  def convert_ids_to_tokens(
    self, ids: Union[int, List[int]], skip_special_tokens: bool = False
  ) -> Union[str, List[str]]:
    """
    Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
    added tokens.
    Args:
        ids (:obj:`int` or :obj:`List[int]`):
            The token id (or token ids) to convert to tokens.
        skip_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to remove special tokens in the decoding.
    Returns:
        :obj:`str` or :obj:`List[str]`: The decoded token(s).
    """
    if isinstance(ids, int):
      if ids in self.added_tokens_decoder:
        return self.added_tokens_decoder[ids]
      else:
        return self._convert_id_to_token(ids)
    tokens = []
    for index in ids:
      index = int(index)
      if skip_special_tokens and index in self.all_special_ids:
        continue
      if index in self.added_tokens_decoder:
        tokens.append(self.added_tokens_decoder[index])
      else:
        tokens.append(self._convert_id_to_token(index))
    return tokens

  def _convert_id_to_token(self, index: int) -> str:
    raise NotImplementedError

  def convert_tokens_to_string(self, tokens: List[str]) -> str:
    return " ".join(tokens)

  def _decode(
    self,
    token_ids: List[int],
    skip_special_tokens: bool = False,
    clean_up_tokenization_spaces: bool = True,
    spaces_between_special_tokens: bool = True,
  ) -> str:
    filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)

    # To avoid mixing byte-level and unicode for byte-level BPT
    # we need to build string separately for added tokens and byte-level tokens
    # cf. https://github.com/huggingface/transformers/issues/1133
    sub_texts = []
    current_sub_text = []
    for token in filtered_tokens:
      if skip_special_tokens and token in self.all_special_ids:
        continue
      if token in self.added_tokens_encoder:
        if current_sub_text:
          sub_texts.append(self.convert_tokens_to_string(current_sub_text))
          current_sub_text = []
        sub_texts.append(token)
      else:
        current_sub_text.append(token)
    if current_sub_text:
      sub_texts.append(self.convert_tokens_to_string(current_sub_text))

    if spaces_between_special_tokens:
      text = " ".join(sub_texts)
    else:
      text = "".join(sub_texts)

    if clean_up_tokenization_spaces:
      clean_text = self.clean_up_tokenization(text)
      return clean_text
    else:
      return text



class BertTokenizer(PreTrainedTokenizer):
  vocab_files_names = VOCAB_FILES_NAMES
  pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
  pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
  max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

  def __init__(
    self,
    vocab_file,
    do_lower_case=True,
    do_basic_tokenize=True,
    never_split=None,
    unk_token="[UNK]",
    sep_token="[SEP]",
    pad_token="[PAD]",
    cls_token="[CLS]",
    mask_token="[MASK]",
    tokenize_chinese_chars=True,
    strip_accents=None,
    **kwargs
  ):
    super().__init__(
      do_lower_case=do_lower_case,
      do_basic_tokenize=do_basic_tokenize,
      never_split=never_split,
      unk_token=unk_token,
      sep_token=sep_token,
      pad_token=pad_token,
      cls_token=cls_token,
      mask_token=mask_token,
      tokenize_chinese_chars=tokenize_chinese_chars,
      strip_accents=strip_accents,
      **kwargs,
    )
    self.vocab = load_vocab(vocab_file)
    self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
    self.do_basic_tokenize = do_basic_tokenize
    if do_basic_tokenize:
      self.basic_tokenizer = BasicTokenizer(
        do_lower_case=do_lower_case,
        never_split=never_split,
        tokenize_chinese_chars=tokenize_chinese_chars,
        strip_accents=strip_accents,
      )
    self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)

  @property
  def do_lower_case(self):
    return self.basic_tokenizer.do_lower_case

  @property
  def vocab_size(self):
    return len(self.vocab)

  def get_vocab(self):
    return dict(self.vocab, **self.added_tokens_encoder)

  def _tokenize(self, text):
    split_tokens = []
    if self.do_basic_tokenize:
      for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):

        # If the token is part of the never_split set
        if token in self.basic_tokenizer.never_split:
          split_tokens.append(token)
        else:
          split_tokens += self.wordpiece_tokenizer.tokenize(token)
    else:
      split_tokens = self.wordpiece_tokenizer.tokenize(text)
    return split_tokens

  def _convert_token_to_id(self, token):
    return self.vocab.get(token, self.vocab.get(self.unk_token))

  def _convert_id_to_token(self, index):
    return self.ids_to_tokens.get(index, self.unk_token)

  def convert_tokens_to_string(self, tokens):
    out_string = " ".join(tokens).replace(" ##", "").strip()
    return out_string

  def build_inputs_with_special_tokens(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
  ) -> List[int]:
    if token_ids_1 is None:
      return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
    cls = [self.cls_token_id]
    sep = [self.sep_token_id]
    return cls + token_ids_0 + sep + token_ids_1 + sep

  def get_special_tokens_mask(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
  ) -> List[int]:
    if already_has_special_tokens:
      if token_ids_1 is not None:
        raise ValueError(
          "You should not supply a second sequence if the provided sequence of "
          "ids is already formatted with special tokens for the model."
        )
      return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))

    if token_ids_1 is not None:
      return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
    return [1] + ([0] * len(token_ids_0)) + [1]

  def create_token_type_ids_from_sequences(
    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
  ) -> List[int]:
    sep = [self.sep_token_id]
    cls = [self.cls_token_id]
    if token_ids_1 is None:
      return len(cls + token_ids_0 + sep) * [0]
    return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

  def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
    index = 0
    if os.path.isdir(save_directory):
      vocab_file = os.path.join(
        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
      )
    else:
      vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
    with open(vocab_file, "w", encoding="utf-8") as writer:
      for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
        if index != token_index:
          index = token_index
        writer.write(token + "\n")
        index += 1
    return (vocab_file,)


class BasicTokenizer(object):
  def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
    if never_split is None:
      never_split = []
    self.do_lower_case = do_lower_case
    self.never_split = set(never_split)
    self.tokenize_chinese_chars = tokenize_chinese_chars
    self.strip_accents = strip_accents

  def tokenize(self, text, never_split=None):
    # union() returns a new set by concatenating the two sets.
    never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
    text = self._clean_text(text)

    # This was added on November 1st, 2018 for the multilingual and Chinese
    # models. This is also applied to the English models now, but it doesn't
    # matter since the English models were not trained on any Chinese data
    # and generally don't have any Chinese data in them (there are Chinese
    # characters in the vocabulary because Wikipedia does have some Chinese
    # words in the English Wikipedia.).
    if self.tokenize_chinese_chars:
      text = self._tokenize_chinese_chars(text)
    orig_tokens = whitespace_tokenize(text)
    split_tokens = []
    for token in orig_tokens:
      if token not in never_split:
        if self.do_lower_case:
          token = token.lower()
          if self.strip_accents is not False:
            token = self._run_strip_accents(token)
        elif self.strip_accents:
          token = self._run_strip_accents(token)
      split_tokens.extend(self._run_split_on_punc(token, never_split))

    output_tokens = whitespace_tokenize(" ".join(split_tokens))
    return output_tokens

  def _run_strip_accents(self, text):
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
      cat = unicodedata.category(char)
      if cat == "Mn":
        continue
      output.append(char)
    return "".join(output)

  def _run_split_on_punc(self, text, never_split=None):
    if never_split is not None and text in never_split:
      return [text]
    chars = list(text)
    i = 0
    start_new_word = True
    output = []
    while i < len(chars):
      char = chars[i]
      if _is_punctuation(char):
        output.append([char])
        start_new_word = True
      else:
        if start_new_word:
          output.append([])
        start_new_word = False
        output[-1].append(char)
      i += 1

    return ["".join(x) for x in output]

  def _tokenize_chinese_chars(self, text):
    output = []
    for char in text:
      cp = ord(char)
      if self._is_chinese_char(cp):
        output.append(" ")
        output.append(char)
        output.append(" ")
      else:
        output.append(char)
    return "".join(output)

  def _is_chinese_char(self, cp):
    # This defines a "chinese character" as anything in the CJK Unicode block:
    #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
    #
    # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
    # despite its name. The modern Korean Hangul alphabet is a different block,
    # as is Japanese Hiragana and Katakana. Those alphabets are used to write
    # space-separated words, so they are not treated specially and handled
    # like the all of the other languages.
    if (
      (cp >= 0x4E00 and cp <= 0x9FFF)
      or (cp >= 0x3400 and cp <= 0x4DBF)  #
      or (cp >= 0x20000 and cp <= 0x2A6DF)  #
      or (cp >= 0x2A700 and cp <= 0x2B73F)  #
      or (cp >= 0x2B740 and cp <= 0x2B81F)  #
      or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
      or (cp >= 0xF900 and cp <= 0xFAFF)
      or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
    ):  #
      return True

    return False

  def _clean_text(self, text):
    output = []
    for char in text:
      cp = ord(char)
      if cp == 0 or cp == 0xFFFD or _is_control(char):
        continue
      if _is_whitespace(char):
        output.append(" ")
      else:
        output.append(char)
    return "".join(output)


class WordpieceTokenizer(object):
  def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
    self.vocab = vocab
    self.unk_token = unk_token
    self.max_input_chars_per_word = max_input_chars_per_word

  def tokenize(self, text):
    output_tokens = []
    for token in whitespace_tokenize(text):
      chars = list(token)
      if len(chars) > self.max_input_chars_per_word:
        output_tokens.append(self.unk_token)
        continue

      is_bad = False
      start = 0
      sub_tokens = []
      while start < len(chars):
        end = len(chars)
        cur_substr = None
        while start < end:
          substr = "".join(chars[start:end])
          if start > 0:
            substr = "##" + substr
          if substr in self.vocab:
            cur_substr = substr
            break
          end -= 1
        if cur_substr is None:
          is_bad = True
          break
        sub_tokens.append(cur_substr)
        start = end

      if is_bad:
        output_tokens.append(self.unk_token)
      else:
        output_tokens.extend(sub_tokens)
    return output_tokens