--- library_name: transformers tags: [] --- ``` import torch from udev.models.amplify.modeling_amplify import AMPLIFY device = torch.device("cuda") # only cuda is supported model = AMPLIFY.from_pretrained('GleghornLab/AMPLIFY_120M', token=token).to(device) tokenizer = EsmTokenizer.from_pretrained('GleghornLab/AMPLIFY_120M', token=token) sequences = ['SEQWENCE', 'MEAEGAVE'] # list of seqs: str tokens = tokenizer(sequences, return_tensors='pt', padding=True, pad_to_multiple_of=8) tokens = {k: v.to(device) for k, v in tokens.items()} out = model( src=tokens['input_ids'], pad_mask=tokens['attention_mask'].float(), output_hidden_states=True, output_attentions=True ) ```