George-Ogden commited on
Commit
a758773
·
1 Parent(s): 58c7106

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -1
README.md CHANGED
@@ -9,4 +9,50 @@ language:
9
  metrics:
10
  - accuracy
11
  pipeline_tag: text-classification
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  metrics:
10
  - accuracy
11
  pipeline_tag: text-classification
12
+ ---
13
+ Evaluate on MNLI:
14
+ ```
15
+ from transformers import (
16
+ default_data_collator,
17
+ AutoTokenizer,
18
+ AutoModelForSequenceClassification,
19
+ Trainer,
20
+ )
21
+ from datasets import load_dataset
22
+
23
+ import functools
24
+
25
+ from utils import compute_metrics, preprocess_function
26
+
27
+ model_name = "George-Ogden/bert-base-cased-finetuned-mnli"
28
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
29
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
30
+ trainer = Trainer(
31
+ model=model,
32
+ eval_dataset="mnli",
33
+ tokenizer=tokenizer,
34
+ compute_metrics=compute_metrics,
35
+ data_collator=default_data_collator,
36
+ )
37
+
38
+ raw_datasets = load_dataset(
39
+ "glue",
40
+ "mnli",
41
+ ).map(functools.partial(preprocess_function, tokenizer), batched=True)
42
+
43
+ tasks = ["mnli", "mnli-mm"]
44
+ eval_datasets = [
45
+ raw_datasets["validation_matched"],
46
+ raw_datasets["validation_mismatched"],
47
+ ]
48
+
49
+ for layers in reversed(range(model.num_layers + 1)):
50
+ for eval_dataset, task in zip(eval_datasets, tasks):
51
+ metrics = trainer.evaluate(eval_dataset=eval_dataset)
52
+ metrics["eval_samples"] = len(eval_dataset)
53
+
54
+ if task == "mnli-mm":
55
+ metrics = {k + "_mm": v for k, v in metrics.items()}
56
+
57
+ trainer.log_metrics(metrics)
58
+ ```