|
from typing import Optional, Tuple, Union |
|
from functools import partial |
|
|
|
import torch |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_outputs import BaseModelOutputWithPast |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import logging |
|
from transformers import AutoModel |
|
from transformers.models.mistral.configuration_mistral import MistralConfig |
|
from transformers.models.mistral.modeling_mistral import MistralModel |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa |
|
|
|
from .configuration_mistral_dual import MistralDualConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class MistralDualModel(MistralModel): |
|
config_class = MistralDualConfig |
|
|
|
def __init__(self, config: MistralDualConfig): |
|
super().__init__(config) |
|
for layer in self.layers: |
|
layer.self_attn.is_causal = False |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
is_causal = False, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
partial(decoder_layer.__call__, is_causal=is_causal), |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
is_causal=is_causal, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
output = BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
return output if return_dict else output.to_tuple() |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
config: MistralConfig, |
|
past_key_values: Cache, |
|
): |
|
""" |
|
Creates a bidirectional 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`, |
|
where all tokens can attend to all others. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
return attention_mask |
|
|
|
min_dtype = torch.finfo(dtype).min |
|
|
|
bidirectional_mask = torch.zeros((sequence_length, target_length), dtype=dtype, device=device) |
|
bidirectional_mask = bidirectional_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
|
|
if attention_mask is not None: |
|
bidirectional_mask = bidirectional_mask.clone() |
|
if attention_mask.shape[-1] > target_length: |
|
attention_mask = attention_mask[:, :target_length] |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = bidirectional_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
bidirectional_mask[:, :, :, :mask_length] = bidirectional_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return bidirectional_mask |
|
|
|
|
|
AutoModel.register(MistralDualConfig, MistralDualModel) |
|
MistralDualModel.register_for_auto_class() |