File size: 4,355 Bytes
4901fe7
 
 
 
 
 
 
 
 
58dcff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a5d177
 
58dcff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b535ef
58dcff1
 
 
 
 
 
86d4b29
 
 
58dcff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4901fe7
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: mit
pipeline_tag: text-generation
tags:
- biology
- genomics
- long-context
library_name: transformers
---
# GENERator-eukaryote-3b-base model

## Abouts
In this repository, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs and 3B parameters, trained on an expansive dataset comprising 386 billion base pairs of eukaryotic DNA. The extensive and diverse pre-training data endow the GENERator with enhanced understanding and generation capabilities across various organisms.

For more technical details, please refer to our paper [GENERator: A Long-Context Generative Genomic Foundation Model](https://huggingface.co/GenerTeam).

## How to use
### Simple example1:  generation

```python

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the tokenizer and model.
tokenizer = AutoTokenizer.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base")
config = model.config

max_length = config.max_position_embeddings

# Define input sequences.
sequences = [
    "ATGAGGTGGCAAGAAATGGGCTAC",
    "GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
]

# Process the sequences
sequences = [tokenizer.bos_token + sequence for sequence in sequences]

# Tokenize the sequences
tokenizer.padding_side = "left"
inputs = tokenizer(
    sequences,
    add_special_tokens=False,
    return_tensors="pt",
    padding=True,
    truncation=True,
    max_length=max_length
)

# Generate the sequences
with torch.inference_mode():
    outputs = model.generate(**inputs, max_new_tokens=32, temperature=0.00001, top_k=1)

# Decode the generated sequences
decoded_sequences = tokenizer.batch_decode(outputs, skip_special_tokens=True)

# Print the decoded sequences
print(decoded_sequences)

# It is expected to observe non-sense decoded sequences (e.g., 'AAAAAA')
# The input sequences are too short to provide sufficient context.
```

### Simple example2: embedding

```python

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the tokenizer and model.
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("GENERator-eukaryote-3b-base")

config = model.config
max_length = config.max_position_embeddings

# Define input sequences.
sequences = [
    "ATGAGGTGGCAAGAAATGGGCTAC",
    "GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
]

# Tokenize the sequences with add_special_tokens=True to automatically add special tokens,
# such as the BOS EOS token, at the appropriate positions.
tokenizer.padding_side = "right"
inputs = tokenizer(
    sequences,
    add_special_tokens=True,
    return_tensors="pt",
    padding=True,
    truncation=True,
    max_length=max_length
)

# Perform a forward pass through the model to obtain the outputs, including hidden states.
with torch.inference_mode():
    outputs = model(**inputs, output_hidden_states=True)

# Retrieve the hidden states from the last layer.
hidden_states = outputs.hidden_states[-1]  # Shape: (batch_size, sequence_length, hidden_size)

# Use the attention_mask to determine the index of the last token in each sequence.
# Since add_special_tokens=True is used, the last token is typically the EOS token.
attention_mask = inputs["attention_mask"]
last_token_indices = attention_mask.sum(dim=1) - 1  # Index of the last token for each sequence

# Extract the embedding corresponding to the EOS token for each sequence.
seq_embeddings = []
for i, token_index in enumerate(last_token_indices):
    # Fetch the embedding for the last token (EOS token).
    seq_embedding = hidden_states[i, token_index, :]
    seq_embeddings.append(seq_embedding)

# Stack the embeddings into a tensor with shape (batch_size, hidden_size)
seq_embeddings = torch.stack(seq_embeddings)

print("Sequence Embeddings:", seq_embeddings)

```

## Citation
```
@misc{wu2025generator,
      title={GENERator: A Long-Context Generative Genomic Foundation Model}, 
      author={Wei Wu and Qiuyi Li and Mingyang Li and Kun Fu and Fuli Feng and Jieping Ye and Hui Xiong and Zheng Wang},
      year={2025},
      eprint={2502.07272},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.07272}, 
}
```