File size: 36,199 Bytes
a5b9d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "-jAYlxeKxvAJ"
},
"source": [
"# GraphCast\n",
"\n",
"This colab lets you run several versions of GraphCast.\n",
"\n",
"The model weights, normalization statistics, and example inputs are available on [Google Cloud Bucket](https://console.cloud.google.com/storage/browser/dm_graphcast).\n",
"\n",
"A Colab runtime with TPU/GPU acceleration will substantially speed up generating predictions and computing the loss/gradients. If you're using a CPU-only runtime, you can switch using the menu \"Runtime \u003e Change runtime type\"."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IIWlNRupdI2i"
},
"source": [
"\u003e \u003cp\u003e\u003csmall\u003e\u003csmall\u003eCopyright 2023 DeepMind Technologies Limited.\u003c/small\u003e\u003c/p\u003e\n",
"\u003e \u003cp\u003e\u003csmall\u003e\u003csmall\u003eLicensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at \u003ca href=\"http://www.apache.org/licenses/LICENSE-2.0\"\u003ehttp://www.apache.org/licenses/LICENSE-2.0\u003c/a\u003e.\u003c/small\u003e\u003c/small\u003e\u003c/p\u003e\n",
"\u003e \u003cp\u003e\u003csmall\u003e\u003csmall\u003eUnless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.\u003c/small\u003e\u003c/small\u003e\u003c/p\u003e"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yMbbXFl4msJw"
},
"source": [
"# Installation and Initialization\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "-W4K9skv9vh-"
},
"outputs": [],
"source": [
"# @title Pip install graphcast and dependencies\n",
"\n",
"%pip install --upgrade https://github.com/deepmind/graphcast/archive/master.zip"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "MA5087Vb29z2"
},
"outputs": [],
"source": [
"# @title Workaround for cartopy crashes\n",
"\n",
"# Workaround for cartopy crashes due to the shapely installed by default in\n",
"# google colab kernel (https://github.com/anitagraser/movingpandas/issues/81):\n",
"!pip uninstall -y shapely\n",
"!pip install shapely --no-binary shapely"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "Z_j8ej4Pyg1L"
},
"outputs": [],
"source": [
"# @title Imports\n",
"\n",
"import dataclasses\n",
"import datetime\n",
"import functools\n",
"import math\n",
"import re\n",
"from typing import Optional\n",
"\n",
"import cartopy.crs as ccrs\n",
"from google.cloud import storage\n",
"from graphcast import autoregressive\n",
"from graphcast import casting\n",
"from graphcast import checkpoint\n",
"from graphcast import data_utils\n",
"from graphcast import graphcast\n",
"from graphcast import normalization\n",
"from graphcast import rollout\n",
"from graphcast import xarray_jax\n",
"from graphcast import xarray_tree\n",
"from IPython.display import HTML\n",
"import ipywidgets as widgets\n",
"import haiku as hk\n",
"import jax\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import animation\n",
"import numpy as np\n",
"import xarray\n",
"\n",
"\n",
"def parse_file_parts(file_name):\n",
" return dict(part.split(\"-\", 1) for part in file_name.split(\"_\"))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "4wagX1TL_f15"
},
"outputs": [],
"source": [
"# @title Authenticate with Google Cloud Storage\n",
"\n",
"gcs_client = storage.Client.create_anonymous_client()\n",
"gcs_bucket = gcs_client.get_bucket(\"dm_graphcast\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "5JUymx84dI2m"
},
"outputs": [],
"source": [
"# @title Plotting functions\n",
"\n",
"def select(\n",
" data: xarray.Dataset,\n",
" variable: str,\n",
" level: Optional[int] = None,\n",
" max_steps: Optional[int] = None\n",
" ) -\u003e xarray.Dataset:\n",
" data = data[variable]\n",
" if \"batch\" in data.dims:\n",
" data = data.isel(batch=0)\n",
" if max_steps is not None and \"time\" in data.sizes and max_steps \u003c data.sizes[\"time\"]:\n",
" data = data.isel(time=range(0, max_steps))\n",
" if level is not None and \"level\" in data.coords:\n",
" data = data.sel(level=level)\n",
" return data\n",
"\n",
"def scale(\n",
" data: xarray.Dataset,\n",
" center: Optional[float] = None,\n",
" robust: bool = False,\n",
" ) -\u003e tuple[xarray.Dataset, matplotlib.colors.Normalize, str]:\n",
" vmin = np.nanpercentile(data, (2 if robust else 0))\n",
" vmax = np.nanpercentile(data, (98 if robust else 100))\n",
" if center is not None:\n",
" diff = max(vmax - center, center - vmin)\n",
" vmin = center - diff\n",
" vmax = center + diff\n",
" return (data, matplotlib.colors.Normalize(vmin, vmax),\n",
" (\"RdBu_r\" if center is not None else \"viridis\"))\n",
"\n",
"def plot_data(\n",
" data: dict[str, xarray.Dataset],\n",
" fig_title: str,\n",
" plot_size: float = 5,\n",
" robust: bool = False,\n",
" cols: int = 4\n",
" ) -\u003e tuple[xarray.Dataset, matplotlib.colors.Normalize, str]:\n",
"\n",
" first_data = next(iter(data.values()))[0]\n",
" max_steps = first_data.sizes.get(\"time\", 1)\n",
" assert all(max_steps == d.sizes.get(\"time\", 1) for d, _, _ in data.values())\n",
"\n",
" cols = min(cols, len(data))\n",
" rows = math.ceil(len(data) / cols)\n",
" figure = plt.figure(figsize=(plot_size * 2 * cols,\n",
" plot_size * rows))\n",
" figure.suptitle(fig_title, fontsize=16)\n",
" figure.subplots_adjust(wspace=0, hspace=0)\n",
" figure.tight_layout()\n",
"\n",
" images = []\n",
" for i, (title, (plot_data, norm, cmap)) in enumerate(data.items()):\n",
" ax = figure.add_subplot(rows, cols, i+1)\n",
" ax.set_xticks([])\n",
" ax.set_yticks([])\n",
" ax.set_title(title)\n",
" im = ax.imshow(\n",
" plot_data.isel(time=0, missing_dims=\"ignore\"), norm=norm,\n",
" origin=\"lower\", cmap=cmap)\n",
" plt.colorbar(\n",
" mappable=im,\n",
" ax=ax,\n",
" orientation=\"vertical\",\n",
" pad=0.02,\n",
" aspect=16,\n",
" shrink=0.75,\n",
" cmap=cmap,\n",
" extend=(\"both\" if robust else \"neither\"))\n",
" images.append(im)\n",
"\n",
" def update(frame):\n",
" if \"time\" in first_data.dims:\n",
" td = datetime.timedelta(microseconds=first_data[\"time\"][frame].item() / 1000)\n",
" figure.suptitle(f\"{fig_title}, {td}\", fontsize=16)\n",
" else:\n",
" figure.suptitle(fig_title, fontsize=16)\n",
" for im, (plot_data, norm, cmap) in zip(images, data.values()):\n",
" im.set_data(plot_data.isel(time=frame, missing_dims=\"ignore\"))\n",
"\n",
" ani = animation.FuncAnimation(\n",
" fig=figure, func=update, frames=max_steps, interval=250)\n",
" plt.close(figure.number)\n",
" return HTML(ani.to_jshtml())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WEtSV8HEkHtf"
},
"source": [
"# Load the Data and initialize the model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "G50ORsY_dI2n"
},
"source": [
"## Load the model params\n",
"\n",
"Choose one of the two ways of getting model params:\n",
"- **random**: You'll get random predictions, but you can change the model architecture, which may run faster or fit on your device.\n",
"- **checkpoint**: You'll get sensible predictions, but are limited to the model architecture that it was trained with, which may not fit on your device. In particular generating gradients uses a lot of memory, so you'll need at least 25GB of ram (TPUv4 or A100).\n",
"\n",
"Checkpoints vary across a few axes:\n",
"- The mesh size specifies the internal graph representation of the earth. Smaller meshes will run faster but will have worse outputs. The mesh size does not affect the number of parameters of the model.\n",
"- The resolution and number of pressure levels must match the data. Lower resolution and fewer levels will run a bit faster. Data resolution only affects the encoder/decoder.\n",
"- All our models predict precipitation. However, ERA5 includes precipitation, while HRES does not. Our models marked as \"ERA5\" take precipitation as input and expect ERA5 data as input, while model marked \"ERA5-HRES\" do not take precipitation as input and are specifically trained to take HRES-fc0 as input (see the data section below).\n",
"\n",
"We provide three pre-trained models.\n",
"1. `GraphCast`, the high-resolution model used in the GraphCast paper (0.25 degree resolution, 37 pressure levels), trained on ERA5 data from 1979 to 2017,\n",
"\n",
"2. `GraphCast_small`, a smaller, low-resolution version of GraphCast (1 degree resolution, 13 pressure levels, and a smaller mesh), trained on ERA5 data from 1979 to 2015, useful to run a model with lower memory and compute constraints,\n",
"\n",
"3. `GraphCast_operational`, a high-resolution model (0.25 degree resolution, 13 pressure levels) pre-trained on ERA5 data from 1979 to 2017 and fine-tuned on HRES data from 2016 to 2021. This model can be initialized from HRES data (does not require precipitation inputs).\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "KGaJ6V9MdI2n"
},
"outputs": [],
"source": [
"# @title Choose the model\n",
"\n",
"params_file_options = [\n",
" name for blob in gcs_bucket.list_blobs(prefix=\"params/\")\n",
" if (name := blob.name.removeprefix(\"params/\"))] # Drop empty string.\n",
"\n",
"random_mesh_size = widgets.IntSlider(\n",
" value=4, min=4, max=6, description=\"Mesh size:\")\n",
"random_gnn_msg_steps = widgets.IntSlider(\n",
" value=4, min=1, max=32, description=\"GNN message steps:\")\n",
"random_latent_size = widgets.Dropdown(\n",
" options=[int(2**i) for i in range(4, 10)], value=32,description=\"Latent size:\")\n",
"random_levels = widgets.Dropdown(\n",
" options=[13, 37], value=13, description=\"Pressure levels:\")\n",
"\n",
"\n",
"params_file = widgets.Dropdown(\n",
" options=params_file_options,\n",
" description=\"Params file:\",\n",
" layout={\"width\": \"max-content\"})\n",
"\n",
"source_tab = widgets.Tab([\n",
" widgets.VBox([\n",
" random_mesh_size,\n",
" random_gnn_msg_steps,\n",
" random_latent_size,\n",
" random_levels,\n",
" ]),\n",
" params_file,\n",
"])\n",
"source_tab.set_title(0, \"Random\")\n",
"source_tab.set_title(1, \"Checkpoint\")\n",
"widgets.VBox([\n",
" source_tab,\n",
" widgets.Label(value=\"Run the next cell to load the model. Rerunning this cell clears your selection.\")\n",
"])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "lYQgrPgPdI2n"
},
"outputs": [],
"source": [
"# @title Load the model\n",
"\n",
"source = source_tab.get_title(source_tab.selected_index)\n",
"\n",
"if source == \"Random\":\n",
" params = None # Filled in below\n",
" state = {}\n",
" model_config = graphcast.ModelConfig(\n",
" resolution=0,\n",
" mesh_size=random_mesh_size.value,\n",
" latent_size=random_latent_size.value,\n",
" gnn_msg_steps=random_gnn_msg_steps.value,\n",
" hidden_layers=1,\n",
" radius_query_fraction_edge_length=0.6)\n",
" task_config = graphcast.TaskConfig(\n",
" input_variables=graphcast.TASK.input_variables,\n",
" target_variables=graphcast.TASK.target_variables,\n",
" forcing_variables=graphcast.TASK.forcing_variables,\n",
" pressure_levels=graphcast.PRESSURE_LEVELS[random_levels.value],\n",
" input_duration=graphcast.TASK.input_duration,\n",
" )\n",
"else:\n",
" assert source == \"Checkpoint\"\n",
" with gcs_bucket.blob(f\"params/{params_file.value}\").open(\"rb\") as f:\n",
" ckpt = checkpoint.load(f, graphcast.CheckPoint)\n",
" params = ckpt.params\n",
" state = {}\n",
"\n",
" model_config = ckpt.model_config\n",
" task_config = ckpt.task_config\n",
" print(\"Model description:\\n\", ckpt.description, \"\\n\")\n",
" print(\"Model license:\\n\", ckpt.license, \"\\n\")\n",
"\n",
"model_config"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rQWk0RRuCjDN"
},
"source": [
"## Load the example data\n",
"\n",
"Several example datasets are available, varying across a few axes:\n",
"- **Source**: fake, era5, hres\n",
"- **Resolution**: 0.25deg, 1deg, 6deg\n",
"- **Levels**: 13, 37\n",
"- **Steps**: How many timesteps are included\n",
"\n",
"Not all combinations are available.\n",
"- Higher resolution is only available for fewer steps due to the memory requirements of loading them.\n",
"- HRES is only available in 0.25 deg, with 13 pressure levels.\n",
"\n",
"The data resolution must match the model that is loaded.\n",
"\n",
"Some transformations were done from the base datasets:\n",
"- We accumulated precipitation over 6 hours instead of the default 1 hour.\n",
"- For HRES data, each time step corresponds to the HRES forecast at leadtime 0, essentially providing an \"initialisation\" from HRES. See HRES-fc0 in the GraphCast paper for further description. Note that a 6h accumulation of precipitation is not available from HRES, so our model taking HRES inputs does not depend on precipitation. However, because our models predict precipitation, we include the ERA5 precipitation in the example data so it can serve as an illustrative example of ground truth.\n",
"- We include ERA5 `toa_incident_solar_radiation` in the data. Our model uses the radiation at -6h, 0h and +6h as a forcing term for each 1-step prediction. If the radiation is missing from the data (e.g. in an operational setting), it will be computed using a custom implementation that produces values similar to those in ERA5."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "-DJzie5me2-H"
},
"outputs": [],
"source": [
"# @title Get and filter the list of available example datasets\n",
"\n",
"dataset_file_options = [\n",
" name for blob in gcs_bucket.list_blobs(prefix=\"dataset/\")\n",
" if (name := blob.name.removeprefix(\"dataset/\"))] # Drop empty string.\n",
"\n",
"def data_valid_for_model(\n",
" file_name: str, model_config: graphcast.ModelConfig, task_config: graphcast.TaskConfig):\n",
" file_parts = parse_file_parts(file_name.removesuffix(\".nc\"))\n",
" return (\n",
" model_config.resolution in (0, float(file_parts[\"res\"])) and\n",
" len(task_config.pressure_levels) == int(file_parts[\"levels\"]) and\n",
" (\n",
" (\"total_precipitation_6hr\" in task_config.input_variables and\n",
" file_parts[\"source\"] in (\"era5\", \"fake\")) or\n",
" (\"total_precipitation_6hr\" not in task_config.input_variables and\n",
" file_parts[\"source\"] in (\"hres\", \"fake\"))\n",
" )\n",
" )\n",
"\n",
"\n",
"dataset_file = widgets.Dropdown(\n",
" options=[\n",
" (\", \".join([f\"{k}: {v}\" for k, v in parse_file_parts(option.removesuffix(\".nc\")).items()]), option)\n",
" for option in dataset_file_options\n",
" if data_valid_for_model(option, model_config, task_config)\n",
" ],\n",
" description=\"Dataset file:\",\n",
" layout={\"width\": \"max-content\"})\n",
"widgets.VBox([\n",
" dataset_file,\n",
" widgets.Label(value=\"Run the next cell to load the dataset. Rerunning this cell clears your selection and refilters the datasets that match your model.\")\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "Yz-ekISoJxeZ"
},
"outputs": [],
"source": [
"# @title Load weather data\n",
"\n",
"if not data_valid_for_model(dataset_file.value, model_config, task_config):\n",
" raise ValueError(\n",
" \"Invalid dataset file, rerun the cell above and choose a valid dataset file.\")\n",
"\n",
"with gcs_bucket.blob(f\"dataset/{dataset_file.value}\").open(\"rb\") as f:\n",
" example_batch = xarray.load_dataset(f).compute()\n",
"\n",
"assert example_batch.dims[\"time\"] \u003e= 3 # 2 for input, \u003e=1 for targets\n",
"\n",
"print(\", \".join([f\"{k}: {v}\" for k, v in parse_file_parts(dataset_file.value.removesuffix(\".nc\")).items()]))\n",
"\n",
"example_batch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "lXjFvdE6qStr"
},
"outputs": [],
"source": [
"# @title Choose data to plot\n",
"\n",
"plot_example_variable = widgets.Dropdown(\n",
" options=example_batch.data_vars.keys(),\n",
" value=\"2m_temperature\",\n",
" description=\"Variable\")\n",
"plot_example_level = widgets.Dropdown(\n",
" options=example_batch.coords[\"level\"].values,\n",
" value=500,\n",
" description=\"Level\")\n",
"plot_example_robust = widgets.Checkbox(value=True, description=\"Robust\")\n",
"plot_example_max_steps = widgets.IntSlider(\n",
" min=1, max=example_batch.dims[\"time\"], value=example_batch.dims[\"time\"],\n",
" description=\"Max steps\")\n",
"\n",
"widgets.VBox([\n",
" plot_example_variable,\n",
" plot_example_level,\n",
" plot_example_robust,\n",
" plot_example_max_steps,\n",
" widgets.Label(value=\"Run the next cell to plot the data. Rerunning this cell clears your selection.\")\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "kIK-EgMdkHtk"
},
"outputs": [],
"source": [
"# @title Plot example data\n",
"\n",
"plot_size = 7\n",
"\n",
"data = {\n",
" \" \": scale(select(example_batch, plot_example_variable.value, plot_example_level.value, plot_example_max_steps.value),\n",
" robust=plot_example_robust.value),\n",
"}\n",
"fig_title = plot_example_variable.value\n",
"if \"level\" in example_batch[plot_example_variable.value].coords:\n",
" fig_title += f\" at {plot_example_level.value} hPa\"\n",
"\n",
"plot_data(data, fig_title, plot_size, plot_example_robust.value)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "tPVy1GHokHtk"
},
"outputs": [],
"source": [
"# @title Choose training and eval data to extract\n",
"train_steps = widgets.IntSlider(\n",
" value=1, min=1, max=example_batch.sizes[\"time\"]-2, description=\"Train steps\")\n",
"eval_steps = widgets.IntSlider(\n",
" value=example_batch.sizes[\"time\"]-2, min=1, max=example_batch.sizes[\"time\"]-2, description=\"Eval steps\")\n",
"\n",
"widgets.VBox([\n",
" train_steps,\n",
" eval_steps,\n",
" widgets.Label(value=\"Run the next cell to extract the data. Rerunning this cell clears your selection.\")\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "Ogp4vTBvsgSt"
},
"outputs": [],
"source": [
"# @title Extract training and eval data\n",
"\n",
"train_inputs, train_targets, train_forcings = data_utils.extract_inputs_targets_forcings(\n",
" example_batch, target_lead_times=slice(\"6h\", f\"{train_steps.value*6}h\"),\n",
" **dataclasses.asdict(task_config))\n",
"\n",
"eval_inputs, eval_targets, eval_forcings = data_utils.extract_inputs_targets_forcings(\n",
" example_batch, target_lead_times=slice(\"6h\", f\"{eval_steps.value*6}h\"),\n",
" **dataclasses.asdict(task_config))\n",
"\n",
"print(\"All Examples: \", example_batch.dims.mapping)\n",
"print(\"Train Inputs: \", train_inputs.dims.mapping)\n",
"print(\"Train Targets: \", train_targets.dims.mapping)\n",
"print(\"Train Forcings:\", train_forcings.dims.mapping)\n",
"print(\"Eval Inputs: \", eval_inputs.dims.mapping)\n",
"print(\"Eval Targets: \", eval_targets.dims.mapping)\n",
"print(\"Eval Forcings: \", eval_forcings.dims.mapping)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "Q--ZRhpTdI2o"
},
"outputs": [],
"source": [
"# @title Load normalization data\n",
"\n",
"with gcs_bucket.blob(\"stats/diffs_stddev_by_level.nc\").open(\"rb\") as f:\n",
" diffs_stddev_by_level = xarray.load_dataset(f).compute()\n",
"with gcs_bucket.blob(\"stats/mean_by_level.nc\").open(\"rb\") as f:\n",
" mean_by_level = xarray.load_dataset(f).compute()\n",
"with gcs_bucket.blob(\"stats/stddev_by_level.nc\").open(\"rb\") as f:\n",
" stddev_by_level = xarray.load_dataset(f).compute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ke2zQyuT_sMA"
},
"outputs": [],
"source": [
"# @title Build jitted functions, and possibly initialize random weights\n",
"\n",
"def construct_wrapped_graphcast(\n",
" model_config: graphcast.ModelConfig,\n",
" task_config: graphcast.TaskConfig):\n",
" \"\"\"Constructs and wraps the GraphCast Predictor.\"\"\"\n",
" # Deeper one-step predictor.\n",
" predictor = graphcast.GraphCast(model_config, task_config)\n",
"\n",
" # Modify inputs/outputs to `graphcast.GraphCast` to handle conversion to\n",
" # from/to float32 to/from BFloat16.\n",
" predictor = casting.Bfloat16Cast(predictor)\n",
"\n",
" # Modify inputs/outputs to `casting.Bfloat16Cast` so the casting to/from\n",
" # BFloat16 happens after applying normalization to the inputs/targets.\n",
" predictor = normalization.InputsAndResiduals(\n",
" predictor,\n",
" diffs_stddev_by_level=diffs_stddev_by_level,\n",
" mean_by_level=mean_by_level,\n",
" stddev_by_level=stddev_by_level)\n",
"\n",
" # Wraps everything so the one-step model can produce trajectories.\n",
" predictor = autoregressive.Predictor(predictor, gradient_checkpointing=True)\n",
" return predictor\n",
"\n",
"\n",
"@hk.transform_with_state\n",
"def run_forward(model_config, task_config, inputs, targets_template, forcings):\n",
" predictor = construct_wrapped_graphcast(model_config, task_config)\n",
" return predictor(inputs, targets_template=targets_template, forcings=forcings)\n",
"\n",
"\n",
"@hk.transform_with_state\n",
"def loss_fn(model_config, task_config, inputs, targets, forcings):\n",
" predictor = construct_wrapped_graphcast(model_config, task_config)\n",
" loss, diagnostics = predictor.loss(inputs, targets, forcings)\n",
" return xarray_tree.map_structure(\n",
" lambda x: xarray_jax.unwrap_data(x.mean(), require_jax=True),\n",
" (loss, diagnostics))\n",
"\n",
"def grads_fn(params, state, model_config, task_config, inputs, targets, forcings):\n",
" def _aux(params, state, i, t, f):\n",
" (loss, diagnostics), next_state = loss_fn.apply(\n",
" params, state, jax.random.PRNGKey(0), model_config, task_config,\n",
" i, t, f)\n",
" return loss, (diagnostics, next_state)\n",
" (loss, (diagnostics, next_state)), grads = jax.value_and_grad(\n",
" _aux, has_aux=True)(params, state, inputs, targets, forcings)\n",
" return loss, diagnostics, next_state, grads\n",
"\n",
"# Jax doesn't seem to like passing configs as args through the jit. Passing it\n",
"# in via partial (instead of capture by closure) forces jax to invalidate the\n",
"# jit cache if you change configs.\n",
"def with_configs(fn):\n",
" return functools.partial(\n",
" fn, model_config=model_config, task_config=task_config)\n",
"\n",
"# Always pass params and state, so the usage below are simpler\n",
"def with_params(fn):\n",
" return functools.partial(fn, params=params, state=state)\n",
"\n",
"# Our models aren't stateful, so the state is always empty, so just return the\n",
"# predictions. This is requiredy by our rollout code, and generally simpler.\n",
"def drop_state(fn):\n",
" return lambda **kw: fn(**kw)[0]\n",
"\n",
"init_jitted = jax.jit(with_configs(run_forward.init))\n",
"\n",
"if params is None:\n",
" params, state = init_jitted(\n",
" rng=jax.random.PRNGKey(0),\n",
" inputs=train_inputs,\n",
" targets_template=train_targets,\n",
" forcings=train_forcings)\n",
"\n",
"loss_fn_jitted = drop_state(with_params(jax.jit(with_configs(loss_fn.apply))))\n",
"grads_fn_jitted = with_params(jax.jit(with_configs(grads_fn)))\n",
"run_forward_jitted = drop_state(with_params(jax.jit(with_configs(\n",
" run_forward.apply))))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VBNutliiCyqA"
},
"source": [
"# Run the model\n",
"\n",
"Note that the cell below may take a while (possibly minutes) to run the first time you execute them, because this will include the time it takes for the code to compile. The second time running will be significantly faster.\n",
"\n",
"This use the python loop to iterate over prediction steps, where the 1-step prediction is jitted. This has lower memory requirements than the training steps below, and should enable making prediction with the small GraphCast model on 1 deg resolution data for 4 steps."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "7obeY9i9oTtD"
},
"outputs": [],
"source": [
"# @title Autoregressive rollout (loop in python)\n",
"\n",
"assert model_config.resolution in (0, 360. / eval_inputs.sizes[\"lon\"]), (\n",
" \"Model resolution doesn't match the data resolution. You likely want to \"\n",
" \"re-filter the dataset list, and download the correct data.\")\n",
"\n",
"print(\"Inputs: \", eval_inputs.dims.mapping)\n",
"print(\"Targets: \", eval_targets.dims.mapping)\n",
"print(\"Forcings:\", eval_forcings.dims.mapping)\n",
"\n",
"predictions = rollout.chunked_prediction(\n",
" run_forward_jitted,\n",
" rng=jax.random.PRNGKey(0),\n",
" inputs=eval_inputs,\n",
" targets_template=eval_targets * np.nan,\n",
" forcings=eval_forcings)\n",
"predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ft298eZskHtn"
},
"outputs": [],
"source": [
"# @title Choose predictions to plot\n",
"\n",
"plot_pred_variable = widgets.Dropdown(\n",
" options=predictions.data_vars.keys(),\n",
" value=\"2m_temperature\",\n",
" description=\"Variable\")\n",
"plot_pred_level = widgets.Dropdown(\n",
" options=predictions.coords[\"level\"].values,\n",
" value=500,\n",
" description=\"Level\")\n",
"plot_pred_robust = widgets.Checkbox(value=True, description=\"Robust\")\n",
"plot_pred_max_steps = widgets.IntSlider(\n",
" min=1,\n",
" max=predictions.dims[\"time\"],\n",
" value=predictions.dims[\"time\"],\n",
" description=\"Max steps\")\n",
"\n",
"widgets.VBox([\n",
" plot_pred_variable,\n",
" plot_pred_level,\n",
" plot_pred_robust,\n",
" plot_pred_max_steps,\n",
" widgets.Label(value=\"Run the next cell to plot the predictions. Rerunning this cell clears your selection.\")\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "_tTdx6fmmj1I"
},
"outputs": [],
"source": [
"# @title Plot predictions\n",
"\n",
"plot_size = 5\n",
"plot_max_steps = min(predictions.dims[\"time\"], plot_pred_max_steps.value)\n",
"\n",
"data = {\n",
" \"Targets\": scale(select(eval_targets, plot_pred_variable.value, plot_pred_level.value, plot_max_steps), robust=plot_pred_robust.value),\n",
" \"Predictions\": scale(select(predictions, plot_pred_variable.value, plot_pred_level.value, plot_max_steps), robust=plot_pred_robust.value),\n",
" \"Diff\": scale((select(eval_targets, plot_pred_variable.value, plot_pred_level.value, plot_max_steps) -\n",
" select(predictions, plot_pred_variable.value, plot_pred_level.value, plot_max_steps)),\n",
" robust=plot_pred_robust.value, center=0),\n",
"}\n",
"fig_title = plot_pred_variable.value\n",
"if \"level\" in predictions[plot_pred_variable.value].coords:\n",
" fig_title += f\" at {plot_pred_level.value} hPa\"\n",
"\n",
"plot_data(data, fig_title, plot_size, plot_pred_robust.value)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pa78b64bLYe1"
},
"source": [
"# Train the model\n",
"\n",
"The following operations require a large amount of memory and, depending on the accelerator being used, will only fit the very small \"random\" model on low resolution data. It uses the number of training steps selected above.\n",
"\n",
"The first time executing the cell takes more time, as it include the time to jit the function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "Nv-u3dAP7IRZ"
},
"outputs": [],
"source": [
"# @title Loss computation (autoregressive loss over multiple steps)\n",
"loss, diagnostics = loss_fn_jitted(\n",
" rng=jax.random.PRNGKey(0),\n",
" inputs=train_inputs,\n",
" targets=train_targets,\n",
" forcings=train_forcings)\n",
"print(\"Loss:\", float(loss))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "mBNFq1IGZNLz"
},
"outputs": [],
"source": [
"# @title Gradient computation (backprop through time)\n",
"loss, diagnostics, next_state, grads = grads_fn_jitted(\n",
" inputs=train_inputs,\n",
" targets=train_targets,\n",
" forcings=train_forcings)\n",
"mean_grad = np.mean(jax.tree_util.tree_flatten(jax.tree_util.tree_map(lambda x: np.abs(x).mean(), grads))[0])\n",
"print(f\"Loss: {loss:.4f}, Mean |grad|: {mean_grad:.6f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "J4FJFKWD8Loz"
},
"outputs": [],
"source": [
"# @title Autoregressive rollout (keep the loop in JAX)\n",
"print(\"Inputs: \", train_inputs.dims.mapping)\n",
"print(\"Targets: \", train_targets.dims.mapping)\n",
"print(\"Forcings:\", train_forcings.dims.mapping)\n",
"\n",
"predictions = run_forward_jitted(\n",
" rng=jax.random.PRNGKey(0),\n",
" inputs=train_inputs,\n",
" targets_template=train_targets * np.nan,\n",
" forcings=train_forcings)\n",
"predictions"
]
}
],
"metadata": {
"colab": {
"name": "GraphCast",
"private_outputs": true,
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|