Upload PPO LunarLander-v2 trained agent
Browse files- README.md +16 -41
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,46 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
'wandb_project_name': 'cleanRL'
|
38 |
-
'wandb_entity': None
|
39 |
-
'capture_video': False
|
40 |
-
'env_id': 'LunarLander-v2'
|
41 |
-
'total_timesteps': 50000
|
42 |
-
'learning_rate': 0.00025
|
43 |
-
'num_envs': 4
|
44 |
-
'num_steps': 128
|
45 |
-
'anneal_lr': True
|
46 |
-
'gae': True
|
47 |
-
'gamma': 0.99
|
48 |
-
'gae_lambda': 0.95
|
49 |
-
'num_minibatches': 4
|
50 |
-
'update_epochs': 4
|
51 |
-
'norm_adv': True
|
52 |
-
'clip_coef': 0.2
|
53 |
-
'clip_vloss': True
|
54 |
-
'ent_coef': 0.01
|
55 |
-
'vf_coef': 0.5
|
56 |
-
'max_grad_norm': 0.5
|
57 |
-
'target_kl': None
|
58 |
-
'repo_id': 'Galeros/ppo-LunarLander-v2'
|
59 |
-
'batch_size': 512
|
60 |
-
'minibatch_size': 128}
|
61 |
-
```
|
62 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 261.94 +/- 24.87
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f05a9379d08>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05a9379d90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05a9379e18>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05a9379ea0>", "_build": "<function ActorCriticPolicy._build at 0x7f05a9379f28>", "forward": "<function ActorCriticPolicy.forward at 0x7f05a937e048>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05a937e0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f05a937e158>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f05a937e1e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05a937e268>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f05a937e2f0>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7f05a93edeb8>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7f05a93edef0>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7f05a93edf28>", "_abc_negative_cache_version": 59}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVVwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgLiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgLiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgriUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoO4wFc3RhdGWUfZQojANrZXmUaBNoFUsAhZRoF4eUUpQoSwFNcAKFlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYolCwAkAAPV6Ti82uAiW6HKF9atJ6/FvoQGpQLXLqt3hd66S1u+y1Egy06FDKJl9CeyHUHkiuSLg1O8LKL6ISqtcDk7AC8AFdximlu+/iQWNAIkmTezZtA4fg6iW9gdjRytcRkCHXyyWXiYqmwMiR/zB1Rs6Gb4x65rriNDPbup1YHdXi64U3InlaSAuSyaHgpLbfaKWesyXBk3y2/aP5u6rRmLMYqMuX5+D5xx0QN1/cOZNlMRhtO6h5iLI+TTeAIi45D8j//DbV32nz86agYGJz/4gTpPfXt1T8al45zMyyGhKuxPNsVOY+5WY8xm3AFgBsXJJjKY6zcaNy5XdKvV8/UQmMzisKYtd5I7yzdrwUS4oEUyez1AzfQjCSRDpaBVw/4MNsUH+28eRC0vwUm+89GPSb0467tICAaFmId7aUC4zYZesS9yJu1wn2ZMLuEWrdaUgXcZahE/WEMEd9N847padfSLu6nJmDLhRPsPj05oZMWg/sZSFVZIQtjH8R4QWQHwJtPxz1c7SPUwKr/mlvVI7UT6RZHjK6p+XMDyim886lSH92MaUrI+h5+FNr2ue5qAhIk+/nH6Ek5p+ZH45KsUTB/ERHbpOd4LWK88o0NbOWMP9ws7VxHdHSBUTb9pMtPYC7UdF6YPtnfrAL6OrqFmZVIHVgjU7Ph8F/as84D0UxHUeMOkrB0nBQMsqdzmQwbBQGr2dKBFN+jTJBuEcPlXW5iHwnBqHVxeds5ZJmgetwh3RIZNYi+dZUGOAAMj4FEfMK8+VgYNSseIcR3Zll7I6roohDve7d1WlN3jtUQcHsR5+IfB7HHQxVS8tMlCbrgOKZRep3ZbiMkc19Egrs8pQlhC11pMiwbHAUGK345bp1rOu0r/Se/bp6tcZcjZMn8EnPzXIXUMSFrlOtCuAReMA1pTZ+cCgU+BGSeLaHnpvrypMGCNeL38mMYIHNxG+JYwDiqmysEURsfkvWlrTfi+AfTFh80h4e0YcuBubjYvbt5m+RipmRGf61hJxypext0rtcHZuP2rAzA6jI6H7hQxSBa7nKGXOQ742JxCkah16ZTH7yAxvONeCRgALCcoa4MkUmH8cfZtEXm99XL6922RzgIEfyLZDeFK01ZVHj5gyitwo3TbB1ZxdWRjD7G1QxWp7n3MRzDlt0NUMHX5sHjbZcsY9Kwte7L1lMP4JK/mHgjhdfeQSdbaXotNSCDc2x6wmH865s/rlSDM4A2UoBwxbASICZySSBRXRHAXXzu403baHzFkVqyusdz5t4JLTUOGf21wgpMMxQdolA/wzvGlrXU/ayQFwVczo5e1XSizcZHt2mrY6F/17eIcqVeZHHAz800DCWxvo2E6hlkrOipd8JhoO2dhqo97dTLLvDN5gbqqCLe4SRNAz0++NYDpMohTcmIJOd7l8o0mvkZZ9TlApPR4c279SAYwYtlqBm9MeQJElyBviiG4ZIRulh64z8pmvtKazrvXFbigt2qdL9Pmx+ngBrY0zWS4n2QXoZ07I/AyCXir69CdCZjHWLRT+p30f2No45RDDQntT9xPMdLhZd815n3CVcMoU0kC3kmVeIpLKRr3jjhuO5/BIAF856xS+U765Co6EQ01wehngPUtOoLhXgZfl4pEJZf1ykma/z8cNsYSL6U724mn2yJeV3NChRSDZ9lgQYO60qjGMFQGnxMBbt0mKuU4vBWixl483l0DsQKd0a/2jPkhW7RodX/s25TOxj/Ai2n+gwzVV8BeqLgrPDjK213pP4EFzrMm45Qk/1IfZoioMyF3d6mYVT+03gWtAUAjwtI/LqXeV7huBxdZlUuzuQbW1+nh/NYQ6Vofz6jAmYTz5o1nZUU+yeBTQP7UXDGu/Xuyn6Jtr/lPwGeI5687PgzNG5BdoV6t2arCvBdtsokmyrX+v+F2dAZ3mqRRLthKK206b9pPnC9WSQG+OboynIvXWhFHkGojIFpf5o2ur1fKtQSrCn963ynkTW/XpuNaOMgGYrGSRoLoAEQEaav+0nyU1P3E8UnFg5IJRwi6tcdmYmY3btLKeNZyL2Dv74pZulJUcvwLaBj90/9ow/bF30l4B/iTpBQC6Aupm1tRn2Ad0qiFSnEYgOyDP0TexAOF2uj+ftKDFo7v8omOOy2fy+rwBTwD5xZUOplIUk2dz015+ZG6lNcjytaSlNoyh5yTboFf4soKMAswyzeqhYRBW/HeqSHNekR9dilRl31YUbr4XK7ejlyAcXCcq1aHfG0rNlx9RLbqmxr9ZclbkSWETEsMi6z9YduWet5o1+MAgSDxdiEziB0VXTXhTVYuwBoGEMT7Vir9rfoh4uQrCu9rp+HSbVQtKIXYPR0V5XjhLUW5dxu9A4Afh4B6WfhH7auxRcxwLQn64ov7ndt/Tz1KkQAOokK0RNzEBgREpy2PmxlhUrJwhzMVxWtLYjRdQfv9pxTwAJ1i9uJso/HuTh3zoTThGiUV6eWhUVtMw9ja8usl18wFj/pUppFT2rBF3y+yxomYmeWKya/87C52hA5HZz2nv7kRBuk9rh/pVa0+GmWKSiq5HIlGDPl45J4BgQAGDB6M7JM9i8LAI6d2W0bU5qwaP9mhseIenpM4qPOBc96aZcFA6+ntcMlbY+wON6K0bHbHH8Gr2LlyTrmKuYuVBbyDooGttSBFUw6UtSnQ6azlVlmG++cy0qGnBw2F+ajJTpZAFpOOFH/TDRAL3B6Awf96mZVZCXscbfQ1D3HKwwbDYF93tLNuO8Atj0UnEe8nrNXKumeB2KtifHoG+hLYHOBhLn+68QfbG/dsR4G6KVpfR/YpgjUR6Cc8aZ2tBZzEfCg4UK3rc+YMfXZEG9p93AahoQSgySMi3r2BsrN9YIH+7XHPlPdePkfTrJUV+TD0Zzq+ZaiFlyWvyJdtkmx1cFj9gPSBkd4mGV7RF0yV8BWKldEXUJz/pvv3vi/B5QsZuOQBLKjZ8tYkmObbYrgBAhGwq2O9pEWMszcI+EWqxNdbMXXOOsqVJdiPF6bTalcczoe79Tu9Ktv3D8oahk97/UTjC7WA1LRewKaguyAPXk+YlOEvidOxu2AexwUWb5fd95jYzoqH27PwSlCxSSWrf2go0aaCrsAKm4gfat6vr9/KankN+8XjxegeYG8jwTkCDlXns5Rzi48+YOC0DTk5HcrjRmk6NFSVfaI7GxK2hzmZOdSsRvykn1zm6GvAD7Mt5VACATQD8tPfSTu3/t7vDVjraAF6psf/P644g3HsSyKolWJ2w0nM31J76/myWWnTl+sp/FCzCjTuFcsHlGroCN6CYJdzAmzV0tkGe0qwUKx2+fHvkrbSckjyvL5R0lGKMA3Bvc5RLEHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVSwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAA4ZGWsoU2ukl3uz3+xAPAuLabmXnx/BDsasIgP6ftX8mpvMXO//wsE19SfLu1U4XRSteF4OLvxR2L/8Zsyo6cZmwjFgPBe7n1iQxgbcZc1ou2Wc2YfFZnY3DK7EpOAN1eToU3h+/ZS2WOHUAcl0K2S9bp5rRZMz9qTE6Cld+qsH2n3/A9LrzFrVbO/xmjnFsIIFLdTld/HFdhl5McCqAHLdU837H9hd3rrXpkITbhJsIy0dHGUkCqnO8hNVBjo5bEv6qb6ktBZdqdhKNNHv9YSzjaZd2xR06F8nXBiXltqLOFBjXsKp6E2tFA16d7uhqqLOLegEOlmEMd36Fl6KR7tVyjxl8aih1kFzzwFoYlil9H0Vxpqg5PpBZ7/cG/z08/RdE9sw7gD/pg3jtWu4Bu4JqP0aXwOuVh3d630AzxhHVxe1Sm0LmTx83d2t7/VHZEO1ZUTbsUHYIEs4mma4VTWO/0u8S8aBIcoK2I8P4GgT4G1YMz6SozRVRsXQR6H4bW6McdmObj6Jqj7+5o1qhSsQyJ6vuEuosmwTVhwMO70kaoquXA67b4OeN+m2wA6+jal2stt7sxDemX9sNjdc71EsZ8QOOEqWijOyF2HHGLjBSbv40MFcJBd9BL0lqDaMocZLyPHtjQsvD2halBofW+cIkxsQnOr+oICuTHojrVX2/MEZamq9HLAJAuwvAIu/9FAKAcedSk/ru+3KUi76kuR3qHYdswbXEqByAaq+abgwAWg5vX1AU6XsuaOX6bW/D5x3tV3JunD0bvc+kAapDkbcgrFFqULhSM7nsmC7dDKU09qLqDp+WzYiHp/TRWJ/b4KAH+UqrzT0cYHspPtBczXYoK1szEyWaHo8uwmtBJUODB7YKS3TMfd7ICRxXUjp7lk+IZkRJ/GdfV8Qga2VZISXUmHMuFoo2rbWOSET6LE9AV3iappn0kwjcKaRpmFARctbiSVIPxnyyyJXCYvoXjAGceKMR1b742tVCzIUv5Umtukze1QiXAgpggxTxujlTZKTxOhw8kZMW7cHd73AJGieuLvDWDh7Qu+Cg+8gQkigQVGIKmrPuj47P1swIRnqh5RGAWC2wtx2Z5GU9fjCuVbCZGNG14oBoGK+pyiIsdSIcHjfClGP2tEg7Ke2CzzP4RN4ut7lWEgQ0agv4OPASYqmUZp+P1zYQE50Hm09byZ9PPA/7Ep95SB7uEqpxXNIEciB5+3pNSYH8OOFxxWoxYHodv+LjGL5SEp794rr1DnCogu4pGHhkJOeGNlvXwZZR9NTl0gUWeS6M4HmEpiFT+NFee3JJq3dCGLpkKFAMBDQivvKpzSO46MeiWz3YB8eXe7cmdNnl4Fhgsylunx7FIwSlHTwFH3Re9+Z/pq2quJfY4gFXiZNW1QLpQrhPGFu3RR7m4tjnoSHYqJFn+3vmfnoHzUg/Pe6ZUJjUOSQS6Omi7xrCaZTyu42TNXdbwnpPvfOtF2fz23FRzvKh7DOlXuv9o5fTBlwMAwh6hUuFExWW/7vpIW/DkUKPDeOVETiq9IlWizkcmir1DhiWjb8cOu2buxXjbW/NNF6j+D4oL0GI2vWGHvN/7WlSjIXLxhfJFsiFr/LjrrwsZCpzLZNdTpKsfRgk6gpLFRsJpoq8xbpQRibsv5yfQWZvGMcmj2XXKv/lsr3bdXPDxDW5FdbOp5H/wqjAWEseGu0Lx8h/bp73DBq7bTid184ZecMNpwTsJs6kvh6VnfBb9xWFpxMtDAjvAh/BDhvJkXqzQyobZzQLQ0AwIasT9OcthP3MCgZll6Om0+8R+XHccXPbWRadPikDbeY6hIVr8wtKhyR/bfz+DByG+Y+ZnDo9D98xc7b9SRKDVn/9oh5yvPr5/PdMZCa1KaU/rjn8IoUoIZi/q4Uu7kWpZHZFxtD/kSg9OSKUiqd1zQ0oU3L7BKo97RImjL10w5oG8KJxXTQJ//2cvgLIdCGapkpq5h/4tgMJ2Mb+PG+cBR2l/JPf1QaStKN2uNo/5JaDNwMJqybvGA992+Z1T+liNOWVX0Ezy9hJ+EL3A+F75ykzAjwm7r6ZO1Y4P5MaIDRPBz/sruY9Z8HN/lZv9dRPhR/j8U7449B+w74293rlz5X7eMF/jI/fQA9SXR4IEHIinfvcqCzfumh5lldalq7Kf2xv3CgB8EDB7K/TmYxrckJXArGyLlXpi0XbAGvUg+khC86bQIPMmuSHpWxvHRZvky8o84YoTpS4FEU7Csax0QERxOkj1QqTQxLckg0nXkZEPHPenlb1/V3/+8hNX+Gj3Fz+7KOQ2i9xKH0QbjZpjQtyK0wKhC+Z008hIOy+Jv5PJEagZWgM30eeK6OQHTDGj9keUptVQVuOzHI+tgedzNOkZ98RP+QknnljqFmVsptTTkr+1pac98sC1TdNu/C8f3O6GoIca34ENhQR1yQVcmQ01D2jxOV+JW542XmZNHNPtbWIOs8MnY/F6wScPhr1MVMf/9/xmsqZJv3AZkEwoc5G6vsKFhnK5KOVmLDczdYpUvBrFSZxHLv0h2sQ223TY6yqLFjte3j7Yy+caVzyl1sfzvAIU9d0XcQnZ+lxmyZUSchNsogx/piEQXAam+i0r1ENUejHyRX7GrwSQZzUW/e9r3VVPUXBWE18K2SoZ4vVWMCVHbRJpsC+xs0OONDr2hoQ/6hDotbRu/nCw1e1VHNw2qM/VFqcswrRvJy5Aeem6M7aHPQE2C53W0SxB9zp8eq2mldsSQusvjOqxsIyWcmcPG/YxsIhneFakHV/BCAAGRhajSol9PfWEZqaogoBdgmXcogCwhCYT1ph2GW52/NjhKczKCI/9HOUmbtJmDzCAxQbkS3bXD4Ew3NY0tD81/2oAZe6gUYhecbCPl+JvrnMGBFauhJVz+uDuX7ONHDfyujN65+M488B5ZQs9QLciUwLhEZXZ6X5wac0Kouwt7m6imN+BBLY2WIziJHwLNEkXPYN8wwPNuFegP3yVMm2LDAUAyzUbNazlaU90+luwv1t6RK3/JHxh+bxkbNV+m08gToScdhbvQmdFgh/YxJFJoyOWaPj86otzLSi8vPOAS2h23ZYQtp+UDuzmX0MmC31s5OVVEHhwxXRD6gsOQ/sZGK9qPtyDt6L5d8yQLPj+SG9390dXsxBRjcr4RTnHiV2lI0PhZy5SK2HCy5w4OOpsr1kLxU1hTxKLcNjJIZ4MeGN1ksCB1D3aBFfqDQdE/Me5HtdApdlQQUVClbItfq99nwAExEvQHN0uFaKbEcvFZr7WLxDalfm9Z8JuuVV0A6Yzi5NPc3LOaWbB2TS/0XSLlbhR5cCFzFrxQTAllHSUYowDcG9zlEsBdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "n": 4, "shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 3000320, "_total_timesteps": 3000000, "seed": null, "action_noise": null, "start_time": 1653589457.7667656, "learning_rate": 0.0003, "tensorboard_log": "./ppo_lunarlander_v2_tensorboard/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgAJWrPKTYC7vC2MM7gqCWPMqxC7xa8IE9AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvOZVndWuSUCUhpRSlIwBbJRL24wBdJRHQLTCWSs8xKx1fZQoaAZoCWgPQwjAdcWMMO1xQJSGlFKUaBVNHgFoFkdAtMKqUxEfDHV9lChoBmgJaA9DCGglrfjG9nFAlIaUUpRoFU0BAWgWR0C0w1ot6HCXdX2UKGgGaAloD0MIcTs0LMaZcUCUhpRSlGgVTZcBaBZHQLTD1RD1Gsp1fZQoaAZoCWgPQwi85lWd1cogwJSGlFKUaBVLcGgWR0C0w/MFY+0PdX2UKGgGaAloD0MI4JwRpX1wcECUhpRSlGgVTaEBaBZHQLTE2Lx7RfF1fZQoaAZoCWgPQwhLV7CNOEtwQJSGlFKUaBVNDgJoFkdAtMWLpMYdhnV9lChoBmgJaA9DCOqymNh8oHJAlIaUUpRoFUvsaBZHQLTFzjh1klN1fZQoaAZoCWgPQwitodReRJc+QJSGlFKUaBVLk2gWR0C0xfVwkxATdX2UKGgGaAloD0MITptxGuJJckCUhpRSlGgVS/1oFkdAtMammdiDunV9lChoBmgJaA9DCNV5VPzfO3NAlIaUUpRoFUvQaBZHQLTG34Vymyh1fZQoaAZoCWgPQwhi9rLtNCxyQJSGlFKUaBVNegFoFkdAtMdQ+Y+jd3V9lChoBmgJaA9DCD6XqUmwO3BAlIaUUpRoFUvZaBZHQLTHi7EpAlh1fZQoaAZoCWgPQwj/PuPCwchyQJSGlFKUaBVL12gWR0C0yDHM6ij+dX2UKGgGaAloD0MImx9/adHwcECUhpRSlGgVTb0BaBZHQLTItfe1rqN1fZQoaAZoCWgPQwjU7lcBflRxQJSGlFKUaBVNSAFoFkdAtMkSvgWJrXV9lChoBmgJaA9DCJAxdy3hUHNAlIaUUpRoFUuwaBZHQLTJrOOsDGN1fZQoaAZoCWgPQwgcP1QasXNwQJSGlFKUaBVLzGgWR0C0yeRBeHBUdX2UKGgGaAloD0MIYf91bprMckCUhpRSlGgVS79oFkdAtMoZlQMx5HV9lChoBmgJaA9DCAte9BWkuXNAlIaUUpRoFUvAaBZHQLTKT5GjKxN1fZQoaAZoCWgPQwh5P26/PDxyQJSGlFKUaBVLymgWR0C0yoeL74zrdX2UKGgGaAloD0MIf/W4bzXtbkCUhpRSlGgVS8doFkdAtMsm+vhZQ3V9lChoBmgJaA9DCHO4VnvY2nJAlIaUUpRoFUvQaBZHQLTLYHH3lCF1fZQoaAZoCWgPQwhTliGOtd5xQJSGlFKUaBVLzWgWR0C0y5cJlar4dX2UKGgGaAloD0MI9uy5TM0jcUCUhpRSlGgVS8doFkdAtMvM3yZrpXV9lChoBmgJaA9DCJOKxtqfznFAlIaUUpRoFUvKaBZHQLTMBeb/ffp1fZQoaAZoCWgPQwjtgsE193dxQJSGlFKUaBVLu2gWR0C0zKWys0YTdX2UKGgGaAloD0MIsyRATe2pckCUhpRSlGgVS+FoFkdAtMzkk+otMHV9lChoBmgJaA9DCMe44uJoJnNAlIaUUpRoFUvRaBZHQLTNH2NvOyF1fZQoaAZoCWgPQwgQIa6cfeJwQJSGlFKUaBVL+WgWR0C0zWJe3QUpdX2UKGgGaAloD0MIOgfPhOYZckCUhpRSlGgVS9doFkdAtM2dNh3JP3V9lChoBmgJaA9DCMhCdAgcMnFAlIaUUpRoFUvfaBZHQLTORWY4Qz11fZQoaAZoCWgPQwjGFKxxdvhwQJSGlFKUaBVLtWgWR0C0znayv9tNdX2UKGgGaAloD0MIe7slOaAZcUCUhpRSlGgVS/BoFkdAtM66B7NSqHV9lChoBmgJaA9DCPORlPSwKHNAlIaUUpRoFUvAaBZHQLTO7s3Q2Mt1fZQoaAZoCWgPQwidZRah2FJzQJSGlFKUaBVLwGgWR0C0zySxzJZGdX2UKGgGaAloD0MI5urHJvmdS0CUhpRSlGgVS4xoFkdAtM+1mAbyY3V9lChoBmgJaA9DCPOv5ZVrAnJAlIaUUpRoFUvfaBZHQLTP8qH446x1fZQoaAZoCWgPQwiwWMNFLl1xQJSGlFKUaBVL0mgWR0C00C0hNdqtdX2UKGgGaAloD0MIqUvGMRJGcECUhpRSlGgVS8xoFkdAtNBibayrxXV9lChoBmgJaA9DCOZY3lWPznNAlIaUUpRoFUvHaBZHQLTQmoNutOp1fZQoaAZoCWgPQwhGJuDXyDNwQJSGlFKUaBVN5wNoFkdAtNJnn/1g6XV9lChoBmgJaA9DCOvIkc4AuXJAlIaUUpRoFUv/aBZHQLTTGZeAuqZ1fZQoaAZoCWgPQwjBc+/hEp9zQJSGlFKUaBVLyGgWR0C001BakhzOdX2UKGgGaAloD0MIRIgrZ++Yc0CUhpRSlGgVS9RoFkdAtNOLiPyTZHV9lChoBmgJaA9DCEAYeO49O2VAlIaUUpRoFU3oA2gWR0C01S1ea8YidX2UKGgGaAloD0MItOOG340rc0CUhpRSlGgVS8poFkdAtNVmc2BJ7XV9lChoBmgJaA9DCC5Tk+ANMnNAlIaUUpRoFUvUaBZHQLTVoF36hxp1fZQoaAZoCWgPQwgfZcQF4KNzQJSGlFKUaBVL12gWR0C01kXj2i+MdX2UKGgGaAloD0MIOpShKmaTcUCUhpRSlGgVS9ZoFkdAtNZ/rgOz6nV9lChoBmgJaA9DCOuQm+EGeGZAlIaUUpRoFU3oA2gWR0C02DrRWtEHdX2UKGgGaAloD0MI1UDzOfcUckCUhpRSlGgVS71oFkdAtNhvHq/ucHV9lChoBmgJaA9DCF9/Ep87flJAlIaUUpRoFUuqaBZHQLTYnQ8fV7R1fZQoaAZoCWgPQwioqWVrPZlxQJSGlFKUaBVNuAFoFkdAtNmN8pkPMHV9lChoBmgJaA9DCKeSAaCKk29AlIaUUpRoFUvRaBZHQLTZxsolUqB1fZQoaAZoCWgPQwjjGTT0D61yQJSGlFKUaBVL3WgWR0C02gP6fra/dX2UKGgGaAloD0MIQDOID2zvbkCUhpRSlGgVS75oFkdAtNo3R2KVIXV9lChoBmgJaA9DCH4czZGVi3JAlIaUUpRoFUvwaBZHQLTaelJYkmh1fZQoaAZoCWgPQwirCDcZFYhxQJSGlFKUaBVNFQFoFkdAtNszaTOgQHV9lChoBmgJaA9DCOdSXFX2I3BAlIaUUpRoFUvRaBZHQLTbbFxn3+N1fZQoaAZoCWgPQwhmoDL+/dNzQJSGlFKUaBVLymgWR0C026RdY4hmdX2UKGgGaAloD0MIQuigS7jxc0CUhpRSlGgVS+FoFkdAtNvh7gKnenV9lChoBmgJaA9DCDeOWIvPTHFAlIaUUpRoFUvAaBZHQLTcFs9SuQp1fZQoaAZoCWgPQwieB3dn7dlyQJSGlFKUaBVLy2gWR0C03LkJSiuddX2UKGgGaAloD0MIMLq8OdwLcECUhpRSlGgVS9loFkdAtNzz4VRDTnV9lChoBmgJaA9DCBWOIJUi23BAlIaUUpRoFUvUaBZHQLTdLNJe3QV1fZQoaAZoCWgPQwh5d2SsdqFyQJSGlFKUaBVLymgWR0C03WShi9ZidX2UKGgGaAloD0MImdamsT1vcECUhpRSlGgVS7doFkdAtN2WkFfReHV9lChoBmgJaA9DCERQNXp1zHJAlIaUUpRoFUvMaBZHQLTeOcJMQEp1fZQoaAZoCWgPQwgVqwZhLklyQJSGlFKUaBVL+2gWR0C03n+IEbHZdX2UKGgGaAloD0MIOul946tqc0CUhpRSlGgVS9doFkdAtN66jesPrnV9lChoBmgJaA9DCEnb+BOV0XFAlIaUUpRoFUvaaBZHQLTe+E4Nqg11fZQoaAZoCWgPQwg+IqZEEtRxQJSGlFKUaBVL22gWR0C0354X9BKMdX2UKGgGaAloD0MIZr/udCfzckCUhpRSlGgVS8xoFkdAtN/VyMkyDnV9lChoBmgJaA9DCFg4SfMH1HJAlIaUUpRoFUvaaBZHQLTgEVk+X7d1fZQoaAZoCWgPQwigppattRlxQJSGlFKUaBVLy2gWR0C04EluejEfdX2UKGgGaAloD0MINQcI5mgSb0CUhpRSlGgVS85oFkdAtOCCm8/Uv3V9lChoBmgJaA9DCNr/AGuVtXBAlIaUUpRoFUvjaBZHQLThKmNzbN91fZQoaAZoCWgPQwjiP91AwThyQJSGlFKUaBVLxWgWR0C04WCxA0KrdX2UKGgGaAloD0MI9Z81P74ZcECUhpRSlGgVS9xoFkdAtOGbI1cdHXV9lChoBmgJaA9DCCujkc9rP3NAlIaUUpRoFUu+aBZHQLThzzGPxQV1fZQoaAZoCWgPQwj7WSxF8pJyQJSGlFKUaBVL2GgWR0C04gxvFWGRdX2UKGgGaAloD0MIbm5MT1i5bkCUhpRSlGgVS8toFkdAtOKuiCaqj3V9lChoBmgJaA9DCIelgR8VP3JAlIaUUpRoFUvWaBZHQLTi6SGahHt1fZQoaAZoCWgPQwhm3T8WoshxQJSGlFKUaBVLvWgWR0C04x09dNWVdX2UKGgGaAloD0MI+kZ0z3pPcUCUhpRSlGgVS9poFkdAtONbSMLncXV9lChoBmgJaA9DCEuwOJy5TnBAlIaUUpRoFUvcaBZHQLTjmRVZLZl1fZQoaAZoCWgPQwicMGE0q1FxQJSGlFKUaBVLwWgWR0C05Dhri2lVdX2UKGgGaAloD0MIiEm4kEf9bkCUhpRSlGgVS/toFkdAtOR+4lQdj3V9lChoBmgJaA9DCFX5npEIAnBAlIaUUpRoFU0BAWgWR0C05Mr2L5ymdX2UKGgGaAloD0MIwvo/hzkycECUhpRSlGgVS91oFkdAtOUIUTL4e3V9lChoBmgJaA9DCLmq7Ltix3JAlIaUUpRoFUvbaBZHQLTlr9YOlO51fZQoaAZoCWgPQwigUE8fwbxwQJSGlFKUaBVL1GgWR0C05ej987ZGdX2UKGgGaAloD0MIrORjd0E/cUCUhpRSlGgVS+JoFkdAtOYn9fkWAXV9lChoBmgJaA9DCEQwDi7duHJAlIaUUpRoFUvkaBZHQLTmZ+RHPNV1fZQoaAZoCWgPQwgC9WbUPN9xQJSGlFKUaBVNJQFoFkdAtOa8KG+K0nV9lChoBmgJaA9DCOHwgojUUnJAlIaUUpRoFUvraBZHQLTnZ6LOzIF1fZQoaAZoCWgPQwj8Gd6sQcByQJSGlFKUaBVLv2gWR0C055xpg1FZdX2UKGgGaAloD0MITDWzlgI2ckCUhpRSlGgVS+9oFkdAtOfgTWXkYHV9lChoBmgJaA9DCJPjTungwW9AlIaUUpRoFUvmaBZHQLToIYUWVNZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 11720, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-4.15.0-180-generic-x86_64-with-Ubuntu-18.04-bionic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022", "Python": "3.6.9", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f68a3d01cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68a3d01d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68a3d01e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68a3d01ea0>", "_build": "<function ActorCriticPolicy._build at 0x7f68a3d01f30>", "forward": "<function ActorCriticPolicy.forward at 0x7f68a3d01fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f68a3d02050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68a3d020e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f68a3d02170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68a3d02200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68a3d02290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68a3d02320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f68a3cfe3c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682622784349259601, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACnnj12/my8rbIKvA60Dz1zGdA9NZ7ivQAAgD8AAIA/c58XvvafHTs+H4E7L+4luZXgurzjSRA6AACAPwAAgD8N7ta9w5VguiAL3zqnzjk2z1N+O4DNALoAAIA/AACAP5rKi7xcSyG60PjqOgZTrzXsRv45GvEEugAAgD8AAIA/zd5MPYaljD/y0cM98vjBvtmaiz0I5du8AAAAAAAAAABzP8m99kwXuuN9Kbrk2Ya13QpJO+a6RzkAAIA/AACAPwDyJ73hrKS6AD/qukR687U5c1q645wGOgAAgD8AAIA/zWDPvFy/XrqXc5u6pmwrtgiGATv70rI5AACAPwAAgD/N1Gs9rvWNumoMVLvggC+3Emi2OsMhdjoAAIA/AACAP00+Qj0fbbq5NY1tu+YLP7VK6bK7uYOPOgAAgD8AAIA/5r0nvRSGlroAdY+5flyFtBTA5rqn2aU4AACAPwAAgD8ALTO9XGscujLbhLn/+Sy2DGfROgadnzUAAIA/AACAPxqHfz6WiV0/4lucO/I1p74TpUI+q/yGvQAAAAAAAAAAM6P1OgOMPLx5pwI8cMgYPJCup73iXwI9AACAPwAAgD/N9FQ8XEtpusb2brv3hBU2zQSKO6sHh7UAAIA/AACAP1rtAL7XyDG7FaG9tkGPB7RkHDc8GAnuNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWf0RhgHZRUCUhpRSlIwBbJRLzYwBdJRHQI82+G47Rv51fZQoaAZoCWgPQwjk9PV8zdNgQJSGlFKUaBVN6ANoFkdAj0M8ZUDMeXV9lChoBmgJaA9DCDhKXp0jNHFAlIaUUpRoFU2iAWgWR0CPRcqkuYhMdX2UKGgGaAloD0MIM4l6wafWaECUhpRSlGgVTegDaBZHQI9MuHi3ocJ1fZQoaAZoCWgPQwiloNtLGj9nQJSGlFKUaBVN6ANoFkdAj3U2KEWZZ3V9lChoBmgJaA9DCPn4hOy8IWBAlIaUUpRoFU3oA2gWR0CPe6aZx7zDdX2UKGgGaAloD0MIpzy6EZZWZkCUhpRSlGgVTegDaBZHQI99kMTewcJ1fZQoaAZoCWgPQwjP9X04yEplQJSGlFKUaBVN6ANoFkdAj4LqGDcuanV9lChoBmgJaA9DCPTdrSzRcF9AlIaUUpRoFU3oA2gWR0CPhshVU+9rdX2UKGgGaAloD0MIA5ZcxWJtZECUhpRSlGgVTegDaBZHQI+S40IkZ751fZQoaAZoCWgPQwhstBzoIYtiQJSGlFKUaBVN6ANoFkdAj5vY/Vy3kXV9lChoBmgJaA9DCKzEPCvpv2VAlIaUUpRoFU3oA2gWR0CPpWjSG8EndX2UKGgGaAloD0MIxoZu9ocrZECUhpRSlGgVTegDaBZHQI+4kUAT7EZ1fZQoaAZoCWgPQwiG4o43eVBjQJSGlFKUaBVN6ANoFkdAj7lGfPHDJnV9lChoBmgJaA9DCFc+y/PgrWNAlIaUUpRoFU3oA2gWR0CPufkbxVhkdX2UKGgGaAloD0MIqBq9GiDxZ0CUhpRSlGgVTegDaBZHQI/EQn2Iwdt1fZQoaAZoCWgPQwiPqbuyC1ZlQJSGlFKUaBVN6ANoFkdAj8essQNCq3V9lChoBmgJaA9DCIo73uS3e2RAlIaUUpRoFU3oA2gWR0CP1K6ySmqHdX2UKGgGaAloD0MIe6Lrwg9GYkCUhpRSlGgVTegDaBZHQI/YOjua4MF1fZQoaAZoCWgPQwhOYhBYOYphQJSGlFKUaBVN6ANoFkdAj+Jcer+5v3V9lChoBmgJaA9DCPs9sU4VZmZAlIaUUpRoFU3oA2gWR0CP5Hrbg0j1dX2UKGgGaAloD0MImggbnt4DZ0CUhpRSlGgVTegDaBZHQJAGykwevIR1fZQoaAZoCWgPQwhGIjSCDUpkQJSGlFKUaBVN6ANoFkdAkAddtMwlB3V9lChoBmgJaA9DCN4gWitabmhAlIaUUpRoFU3oA2gWR0CQCbI7vG6xdX2UKGgGaAloD0MIqDej5qtWYkCUhpRSlGgVTegDaBZHQJALvF85S3t1fZQoaAZoCWgPQwiq8Gd4M7VkQJSGlFKUaBVN6ANoFkdAkBHhTbWVeXV9lChoBmgJaA9DCGNGeHuQJ2RAlIaUUpRoFU3oA2gWR0CQFoHtWuHOdX2UKGgGaAloD0MIZ33KMdk+Y0CUhpRSlGgVTegDaBZHQJAbrBacI7h1fZQoaAZoCWgPQwiVgm4vaUQ0QJSGlFKUaBVL4WgWR0CQI6iHZbpvdX2UKGgGaAloD0MIsb/snrzcY0CUhpRSlGgVTegDaBZHQJAmU9HMEA51fZQoaAZoCWgPQwgZARWOoIBlQJSGlFKUaBVN6ANoFkdAkCbavRqoInV9lChoBmgJaA9DCCC4yhMIymJAlIaUUpRoFU3oA2gWR0CQJ1VcD8tPdX2UKGgGaAloD0MIhjqscEtXYUCUhpRSlGgVTegDaBZHQJAuKm4y44J1fZQoaAZoCWgPQwicU8kA0OhlQJSGlFKUaBVN6ANoFkdAkDB0BOpKjHV9lChoBmgJaA9DCHLdlPLaJWRAlIaUUpRoFU3oA2gWR0CQNwcmShaldX2UKGgGaAloD0MI+BdBY6ZuZUCUhpRSlGgVTegDaBZHQJA4SLWI42l1fZQoaAZoCWgPQwhV3o5w2jpnQJSGlFKUaBVN6ANoFkdAkDuwU5+6RXV9lChoBmgJaA9DCC/bTlsjdGdAlIaUUpRoFU3oA2gWR0CQPGJRfnfVdX2UKGgGaAloD0MIyt5SzheCYUCUhpRSlGgVTegDaBZHQJA+YO5J9Rd1fZQoaAZoCWgPQwhcGyrGeaxjQJSGlFKUaBVN6ANoFkdAkE62ois4k3V9lChoBmgJaA9DCOP9uP1yjWdAlIaUUpRoFU3oA2gWR0CQUQJpnHvMdX2UKGgGaAloD0MIcQSpFDsZZECUhpRSlGgVTegDaBZHQJBTAtxuKoB1fZQoaAZoCWgPQwiA1ZEj3SVxQJSGlFKUaBVNhQJoFkdAkFiBuTA31nV9lChoBmgJaA9DCK/OMSB7KWdAlIaUUpRoFU3oA2gWR0CQWPJng5zYdX2UKGgGaAloD0MI7unqjkWuYkCUhpRSlGgVTegDaBZHQJBkbOpsGgV1fZQoaAZoCWgPQwhXeJeLeLduQJSGlFKUaBVNXwJoFkdAkGjjo6jnFHV9lChoBmgJaA9DCK358ZcWBHFAlIaUUpRoFU0rAmgWR0CQbVobGWD6dX2UKGgGaAloD0MIkX2QZUG5ZkCUhpRSlGgVTegDaBZHQJBu+4Bmwq11fZQoaAZoCWgPQwiMEYlCyyBlQJSGlFKUaBVN6ANoFkdAkHEmu9vjwXV9lChoBmgJaA9DCCnni70XkmZAlIaUUpRoFU3oA2gWR0CQcYA6+36RdX2UKGgGaAloD0MIqYO8HswkZkCUhpRSlGgVTegDaBZHQJB2kG/vfCR1fZQoaAZoCWgPQwjNPo9RniljQJSGlFKUaBVN6ANoFkdAkHg+Tq0MPXV9lChoBmgJaA9DCJxu2SH+qUVAlIaUUpRoFUvFaBZHQJB4Yoa1kUd1fZQoaAZoCWgPQwjj++JSlctwQJSGlFKUaBVNSANoFkdAkH6Q5/9YOnV9lChoBmgJaA9DCBMPKJtyGmJAlIaUUpRoFU3oA2gWR0CQf4Z0Syt3dX2UKGgGaAloD0MI/YSzW8uKRkCUhpRSlGgVS9NoFkdAkIE+tnwocHV9lChoBmgJaA9DCCPb+X5qDGFAlIaUUpRoFU3oA2gWR0CQgxRFZxJedX2UKGgGaAloD0MI5ShAFEyoYkCUhpRSlGgVTegDaBZHQJCGBd7fHgh1fZQoaAZoCWgPQwh9zAcEujNxQJSGlFKUaBVNSgFoFkdAkJoCp71Iy3V9lChoBmgJaA9DCBsrMc/KtmVAlIaUUpRoFU3oA2gWR0CQmh5tWMjvdX2UKGgGaAloD0MIe8A8ZEoSZ0CUhpRSlGgVTegDaBZHQJCcscYIjW11fZQoaAZoCWgPQwhSfecXZb9xQJSGlFKUaBVN4QNoFkdAkKOlIuoP1HV9lChoBmgJaA9DCJ90IsHU7GRAlIaUUpRoFU3oA2gWR0CQpKzOHFgldX2UKGgGaAloD0MI36mAe96McECUhpRSlGgVTWgDaBZHQJCtwi7kGRp1fZQoaAZoCWgPQwhenPhqRxhjQJSGlFKUaBVN6ANoFkdAkK6qAWi1zHV9lChoBmgJaA9DCGSQuwjTD2FAlIaUUpRoFU3oA2gWR0CQsY2CuloEdX2UKGgGaAloD0MIEw1S8BSAY0CUhpRSlGgVTegDaBZHQJC34DzRQad1fZQoaAZoCWgPQwhubHak+iZlQJSGlFKUaBVN6ANoFkdAkLg6//NqxnV9lChoBmgJaA9DCOvDeqPWmWNAlIaUUpRoFU3oA2gWR0CQvzMF2V3VdX2UKGgGaAloD0MIN/+vOvJkckCUhpRSlGgVTacDaBZHQJDB57x/d691fZQoaAZoCWgPQwgTRrOy/QJlQJSGlFKUaBVN6ANoFkdAkMX80xdpqXV9lChoBmgJaA9DCHWw/s9h5l9AlIaUUpRoFU3oA2gWR0CQx63gk1MudX2UKGgGaAloD0MIO3DOiNIfZkCUhpRSlGgVTegDaBZHQJDJYizLOiZ1fZQoaAZoCWgPQwhEpnwIqmlnQJSGlFKUaBVN6ANoFkdAkMw1uJk5InV9lChoBmgJaA9DCE3aVN3jkHBAlIaUUpRoFU2QAmgWR0CQzgMdcSoPdX2UKGgGaAloD0MIVACMZ9CVZUCUhpRSlGgVTegDaBZHQJDkUbCJoCd1fZQoaAZoCWgPQwjhYkUNJlxgQJSGlFKUaBVN6ANoFkdAkORiV0Lc9HV9lChoBmgJaA9DCOIjYkokkQLAlIaUUpRoFUvlaBZHQJDl4VQAMlV1fZQoaAZoCWgPQwiZDp2ed0ZpQJSGlFKUaBVN6ANoFkdAkOYVH4Glh3V9lChoBmgJaA9DCPuUY7J4z3FAlIaUUpRoFU0HAmgWR0CQ5hU2UB4mdX2UKGgGaAloD0MIi3CTUWUsQkCUhpRSlGgVS+VoFkdAkOcPGACnxnV9lChoBmgJaA9DCIiDhCjfsG1AlIaUUpRoFU1XAmgWR0CQ6LavicXndX2UKGgGaAloD0MIzxJkBNR0ZECUhpRSlGgVTegDaBZHQJDpzMxGlRB1fZQoaAZoCWgPQwg7qMR1jP1pQJSGlFKUaBVN6ANoFkdAkOpo5Lh73XV9lChoBmgJaA9DCCC4yhMIbG5AlIaUUpRoFU0lAWgWR0CQ7xHTqjagdX2UKGgGaAloD0MIcvvlkxVLaECUhpRSlGgVTegDaBZHQJDw5w3o9s91fZQoaAZoCWgPQwhe9YB5CIByQJSGlFKUaBVNXwFoFkdAkPGQ2dd3S3V9lChoBmgJaA9DCNvBiH2CNWlAlIaUUpRoFU3oA2gWR0CQ8ydVvMr3dX2UKGgGaAloD0MIdEaU9gb6UUCUhpRSlGgVS+VoFkdAkPM+U6gdwXV9lChoBmgJaA9DCPs/h/lygW9AlIaUUpRoFU2LAWgWR0CQ9OIo3JgcdX2UKGgGaAloD0MIyR6hZohucECUhpRSlGgVTY4CaBZHQJD49/SYw7F1fZQoaAZoCWgPQwgHtd/aiShKQJSGlFKUaBVNBAFoFkdAkPuaJZW7v3V9lChoBmgJaA9DCOuNWmF6Xm5AlIaUUpRoFU1nAmgWR0CQ/k4CZF5OdX2UKGgGaAloD0MIrRQCucSYZkCUhpRSlGgVTegDaBZHQJD+rronrpt1fZQoaAZoCWgPQwhEwCFUKd9kQJSGlFKUaBVN6ANoFkdAkQE3Vf/m1nV9lChoBmgJaA9DCHcstkkFzHJAlIaUUpRoFU1sAmgWR0CRAanzxwyZdX2UKGgGaAloD0MIzNB4Igj+bkCUhpRSlGgVTYECaBZHQJEDy1Vo6CF1fZQoaAZoCWgPQwi+2lGcY4NxQJSGlFKUaBVNkgFoFkdAkQQIHxBmgHV9lChoBmgJaA9DCJZfBmNEsWBAlIaUUpRoFU3oA2gWR0CRCZU2UB4mdX2UKGgGaAloD0MIr5gR3h4iZ0CUhpRSlGgVTegDaBZHQJELxXRw6yV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:798af77099fd845645a63141d80a7b7b64b1938ec02fc45172ac8c1dafd83a97
|
3 |
+
size 147388
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f68a3d01cf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68a3d01d80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68a3d01e10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68a3d01ea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f68a3d01f30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f68a3d01fc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f68a3d02050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68a3d020e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f68a3d02170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68a3d02200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68a3d02290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68a3d02320>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f68a3cfe3c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682622784349259601,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACnnj12/my8rbIKvA60Dz1zGdA9NZ7ivQAAgD8AAIA/c58XvvafHTs+H4E7L+4luZXgurzjSRA6AACAPwAAgD8N7ta9w5VguiAL3zqnzjk2z1N+O4DNALoAAIA/AACAP5rKi7xcSyG60PjqOgZTrzXsRv45GvEEugAAgD8AAIA/zd5MPYaljD/y0cM98vjBvtmaiz0I5du8AAAAAAAAAABzP8m99kwXuuN9Kbrk2Ya13QpJO+a6RzkAAIA/AACAPwDyJ73hrKS6AD/qukR687U5c1q645wGOgAAgD8AAIA/zWDPvFy/XrqXc5u6pmwrtgiGATv70rI5AACAPwAAgD/N1Gs9rvWNumoMVLvggC+3Emi2OsMhdjoAAIA/AACAP00+Qj0fbbq5NY1tu+YLP7VK6bK7uYOPOgAAgD8AAIA/5r0nvRSGlroAdY+5flyFtBTA5rqn2aU4AACAPwAAgD8ALTO9XGscujLbhLn/+Sy2DGfROgadnzUAAIA/AACAPxqHfz6WiV0/4lucO/I1p74TpUI+q/yGvQAAAAAAAAAAM6P1OgOMPLx5pwI8cMgYPJCup73iXwI9AACAPwAAgD/N9FQ8XEtpusb2brv3hBU2zQSKO6sHh7UAAIA/AACAP1rtAL7XyDG7FaG9tkGPB7RkHDc8GAnuNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWf0RhgHZRUCUhpRSlIwBbJRLzYwBdJRHQI82+G47Rv51fZQoaAZoCWgPQwjk9PV8zdNgQJSGlFKUaBVN6ANoFkdAj0M8ZUDMeXV9lChoBmgJaA9DCDhKXp0jNHFAlIaUUpRoFU2iAWgWR0CPRcqkuYhMdX2UKGgGaAloD0MIM4l6wafWaECUhpRSlGgVTegDaBZHQI9MuHi3ocJ1fZQoaAZoCWgPQwiloNtLGj9nQJSGlFKUaBVN6ANoFkdAj3U2KEWZZ3V9lChoBmgJaA9DCPn4hOy8IWBAlIaUUpRoFU3oA2gWR0CPe6aZx7zDdX2UKGgGaAloD0MIpzy6EZZWZkCUhpRSlGgVTegDaBZHQI99kMTewcJ1fZQoaAZoCWgPQwjP9X04yEplQJSGlFKUaBVN6ANoFkdAj4LqGDcuanV9lChoBmgJaA9DCPTdrSzRcF9AlIaUUpRoFU3oA2gWR0CPhshVU+9rdX2UKGgGaAloD0MIA5ZcxWJtZECUhpRSlGgVTegDaBZHQI+S40IkZ751fZQoaAZoCWgPQwhstBzoIYtiQJSGlFKUaBVN6ANoFkdAj5vY/Vy3kXV9lChoBmgJaA9DCKzEPCvpv2VAlIaUUpRoFU3oA2gWR0CPpWjSG8EndX2UKGgGaAloD0MIxoZu9ocrZECUhpRSlGgVTegDaBZHQI+4kUAT7EZ1fZQoaAZoCWgPQwiG4o43eVBjQJSGlFKUaBVN6ANoFkdAj7lGfPHDJnV9lChoBmgJaA9DCFc+y/PgrWNAlIaUUpRoFU3oA2gWR0CPufkbxVhkdX2UKGgGaAloD0MIqBq9GiDxZ0CUhpRSlGgVTegDaBZHQI/EQn2Iwdt1fZQoaAZoCWgPQwiPqbuyC1ZlQJSGlFKUaBVN6ANoFkdAj8essQNCq3V9lChoBmgJaA9DCIo73uS3e2RAlIaUUpRoFU3oA2gWR0CP1K6ySmqHdX2UKGgGaAloD0MIe6Lrwg9GYkCUhpRSlGgVTegDaBZHQI/YOjua4MF1fZQoaAZoCWgPQwhOYhBYOYphQJSGlFKUaBVN6ANoFkdAj+Jcer+5v3V9lChoBmgJaA9DCPs9sU4VZmZAlIaUUpRoFU3oA2gWR0CP5Hrbg0j1dX2UKGgGaAloD0MImggbnt4DZ0CUhpRSlGgVTegDaBZHQJAGykwevIR1fZQoaAZoCWgPQwhGIjSCDUpkQJSGlFKUaBVN6ANoFkdAkAddtMwlB3V9lChoBmgJaA9DCN4gWitabmhAlIaUUpRoFU3oA2gWR0CQCbI7vG6xdX2UKGgGaAloD0MIqDej5qtWYkCUhpRSlGgVTegDaBZHQJALvF85S3t1fZQoaAZoCWgPQwiq8Gd4M7VkQJSGlFKUaBVN6ANoFkdAkBHhTbWVeXV9lChoBmgJaA9DCGNGeHuQJ2RAlIaUUpRoFU3oA2gWR0CQFoHtWuHOdX2UKGgGaAloD0MIZ33KMdk+Y0CUhpRSlGgVTegDaBZHQJAbrBacI7h1fZQoaAZoCWgPQwiVgm4vaUQ0QJSGlFKUaBVL4WgWR0CQI6iHZbpvdX2UKGgGaAloD0MIsb/snrzcY0CUhpRSlGgVTegDaBZHQJAmU9HMEA51fZQoaAZoCWgPQwgZARWOoIBlQJSGlFKUaBVN6ANoFkdAkCbavRqoInV9lChoBmgJaA9DCCC4yhMIymJAlIaUUpRoFU3oA2gWR0CQJ1VcD8tPdX2UKGgGaAloD0MIhjqscEtXYUCUhpRSlGgVTegDaBZHQJAuKm4y44J1fZQoaAZoCWgPQwicU8kA0OhlQJSGlFKUaBVN6ANoFkdAkDB0BOpKjHV9lChoBmgJaA9DCHLdlPLaJWRAlIaUUpRoFU3oA2gWR0CQNwcmShaldX2UKGgGaAloD0MI+BdBY6ZuZUCUhpRSlGgVTegDaBZHQJA4SLWI42l1fZQoaAZoCWgPQwhV3o5w2jpnQJSGlFKUaBVN6ANoFkdAkDuwU5+6RXV9lChoBmgJaA9DCC/bTlsjdGdAlIaUUpRoFU3oA2gWR0CQPGJRfnfVdX2UKGgGaAloD0MIyt5SzheCYUCUhpRSlGgVTegDaBZHQJA+YO5J9Rd1fZQoaAZoCWgPQwhcGyrGeaxjQJSGlFKUaBVN6ANoFkdAkE62ois4k3V9lChoBmgJaA9DCOP9uP1yjWdAlIaUUpRoFU3oA2gWR0CQUQJpnHvMdX2UKGgGaAloD0MIcQSpFDsZZECUhpRSlGgVTegDaBZHQJBTAtxuKoB1fZQoaAZoCWgPQwiA1ZEj3SVxQJSGlFKUaBVNhQJoFkdAkFiBuTA31nV9lChoBmgJaA9DCK/OMSB7KWdAlIaUUpRoFU3oA2gWR0CQWPJng5zYdX2UKGgGaAloD0MI7unqjkWuYkCUhpRSlGgVTegDaBZHQJBkbOpsGgV1fZQoaAZoCWgPQwhXeJeLeLduQJSGlFKUaBVNXwJoFkdAkGjjo6jnFHV9lChoBmgJaA9DCK358ZcWBHFAlIaUUpRoFU0rAmgWR0CQbVobGWD6dX2UKGgGaAloD0MIkX2QZUG5ZkCUhpRSlGgVTegDaBZHQJBu+4Bmwq11fZQoaAZoCWgPQwiMEYlCyyBlQJSGlFKUaBVN6ANoFkdAkHEmu9vjwXV9lChoBmgJaA9DCCnni70XkmZAlIaUUpRoFU3oA2gWR0CQcYA6+36RdX2UKGgGaAloD0MIqYO8HswkZkCUhpRSlGgVTegDaBZHQJB2kG/vfCR1fZQoaAZoCWgPQwjNPo9RniljQJSGlFKUaBVN6ANoFkdAkHg+Tq0MPXV9lChoBmgJaA9DCJxu2SH+qUVAlIaUUpRoFUvFaBZHQJB4Yoa1kUd1fZQoaAZoCWgPQwjj++JSlctwQJSGlFKUaBVNSANoFkdAkH6Q5/9YOnV9lChoBmgJaA9DCBMPKJtyGmJAlIaUUpRoFU3oA2gWR0CQf4Z0Syt3dX2UKGgGaAloD0MI/YSzW8uKRkCUhpRSlGgVS9NoFkdAkIE+tnwocHV9lChoBmgJaA9DCCPb+X5qDGFAlIaUUpRoFU3oA2gWR0CQgxRFZxJedX2UKGgGaAloD0MI5ShAFEyoYkCUhpRSlGgVTegDaBZHQJCGBd7fHgh1fZQoaAZoCWgPQwh9zAcEujNxQJSGlFKUaBVNSgFoFkdAkJoCp71Iy3V9lChoBmgJaA9DCBsrMc/KtmVAlIaUUpRoFU3oA2gWR0CQmh5tWMjvdX2UKGgGaAloD0MIe8A8ZEoSZ0CUhpRSlGgVTegDaBZHQJCcscYIjW11fZQoaAZoCWgPQwhSfecXZb9xQJSGlFKUaBVN4QNoFkdAkKOlIuoP1HV9lChoBmgJaA9DCJ90IsHU7GRAlIaUUpRoFU3oA2gWR0CQpKzOHFgldX2UKGgGaAloD0MI36mAe96McECUhpRSlGgVTWgDaBZHQJCtwi7kGRp1fZQoaAZoCWgPQwhenPhqRxhjQJSGlFKUaBVN6ANoFkdAkK6qAWi1zHV9lChoBmgJaA9DCGSQuwjTD2FAlIaUUpRoFU3oA2gWR0CQsY2CuloEdX2UKGgGaAloD0MIEw1S8BSAY0CUhpRSlGgVTegDaBZHQJC34DzRQad1fZQoaAZoCWgPQwhubHak+iZlQJSGlFKUaBVN6ANoFkdAkLg6//NqxnV9lChoBmgJaA9DCOvDeqPWmWNAlIaUUpRoFU3oA2gWR0CQvzMF2V3VdX2UKGgGaAloD0MIN/+vOvJkckCUhpRSlGgVTacDaBZHQJDB57x/d691fZQoaAZoCWgPQwgTRrOy/QJlQJSGlFKUaBVN6ANoFkdAkMX80xdpqXV9lChoBmgJaA9DCHWw/s9h5l9AlIaUUpRoFU3oA2gWR0CQx63gk1MudX2UKGgGaAloD0MIO3DOiNIfZkCUhpRSlGgVTegDaBZHQJDJYizLOiZ1fZQoaAZoCWgPQwhEpnwIqmlnQJSGlFKUaBVN6ANoFkdAkMw1uJk5InV9lChoBmgJaA9DCE3aVN3jkHBAlIaUUpRoFU2QAmgWR0CQzgMdcSoPdX2UKGgGaAloD0MIVACMZ9CVZUCUhpRSlGgVTegDaBZHQJDkUbCJoCd1fZQoaAZoCWgPQwjhYkUNJlxgQJSGlFKUaBVN6ANoFkdAkORiV0Lc9HV9lChoBmgJaA9DCOIjYkokkQLAlIaUUpRoFUvlaBZHQJDl4VQAMlV1fZQoaAZoCWgPQwiZDp2ed0ZpQJSGlFKUaBVN6ANoFkdAkOYVH4Glh3V9lChoBmgJaA9DCPuUY7J4z3FAlIaUUpRoFU0HAmgWR0CQ5hU2UB4mdX2UKGgGaAloD0MIi3CTUWUsQkCUhpRSlGgVS+VoFkdAkOcPGACnxnV9lChoBmgJaA9DCIiDhCjfsG1AlIaUUpRoFU1XAmgWR0CQ6LavicXndX2UKGgGaAloD0MIzxJkBNR0ZECUhpRSlGgVTegDaBZHQJDpzMxGlRB1fZQoaAZoCWgPQwg7qMR1jP1pQJSGlFKUaBVN6ANoFkdAkOpo5Lh73XV9lChoBmgJaA9DCCC4yhMIbG5AlIaUUpRoFU0lAWgWR0CQ7xHTqjagdX2UKGgGaAloD0MIcvvlkxVLaECUhpRSlGgVTegDaBZHQJDw5w3o9s91fZQoaAZoCWgPQwhe9YB5CIByQJSGlFKUaBVNXwFoFkdAkPGQ2dd3S3V9lChoBmgJaA9DCNvBiH2CNWlAlIaUUpRoFU3oA2gWR0CQ8ydVvMr3dX2UKGgGaAloD0MIdEaU9gb6UUCUhpRSlGgVS+VoFkdAkPM+U6gdwXV9lChoBmgJaA9DCPs/h/lygW9AlIaUUpRoFU2LAWgWR0CQ9OIo3JgcdX2UKGgGaAloD0MIyR6hZohucECUhpRSlGgVTY4CaBZHQJD49/SYw7F1fZQoaAZoCWgPQwgHtd/aiShKQJSGlFKUaBVNBAFoFkdAkPuaJZW7v3V9lChoBmgJaA9DCOuNWmF6Xm5AlIaUUpRoFU1nAmgWR0CQ/k4CZF5OdX2UKGgGaAloD0MIrRQCucSYZkCUhpRSlGgVTegDaBZHQJD+rronrpt1fZQoaAZoCWgPQwhEwCFUKd9kQJSGlFKUaBVN6ANoFkdAkQE3Vf/m1nV9lChoBmgJaA9DCHcstkkFzHJAlIaUUpRoFU1sAmgWR0CRAanzxwyZdX2UKGgGaAloD0MIzNB4Igj+bkCUhpRSlGgVTYECaBZHQJEDy1Vo6CF1fZQoaAZoCWgPQwi+2lGcY4NxQJSGlFKUaBVNkgFoFkdAkQQIHxBmgHV9lChoBmgJaA9DCJZfBmNEsWBAlIaUUpRoFU3oA2gWR0CRCZU2UB4mdX2UKGgGaAloD0MIr5gR3h4iZ0CUhpRSlGgVTegDaBZHQJELxXRw6yV1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93348439290cb7b489f9c4281108d82878d8e62920df2ce3166e7b7214d91fd5
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ed20edc7a673805daf1809394d41984bd4a5874887fa8a5122096b587aaf98a
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c50e50cddd58f3c52a094698c36d9e3a9e39d731ab584391b01a25bec552afac
|
3 |
+
size 211225
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 261.9354570890479, "std_reward": 24.867122417292002, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-27T19:34:29.840131"}
|