--- base_model: - meta-llama/Llama-3.2-3B-Instruct datasets: - snap-stanford/stark metrics: - recall pipeline_tag: question-answering library_name: transformers license: mit --- # MoR This model card for our paper [Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases](https://arxiv.org/pdf/2502.20317). Code: https://github.com/Yoega/MoR # Running the Evaluation and Reranking Script ## Installation To set up the environment, you can install dependencies using Conda or pip: ### Using Conda ```bash conda env create -f mor_env.yml conda activate your_env_name # Replace with actual environment name ``` ### Using pip ```bash pip install -r requirements.txt ``` ## Inference To run the inference script, execute the following command in the terminal: ```bash bash eval_mor.sh ``` This script will automatically process three datasets using the pre-trained planning graph generator and the pre-trained reranker. ## Training (Train MoR from Scratch) ### Step1: Training the planning graph generator ```bash bash train_planner.sh ``` ### Step2: Train mixed traversal to collect candidates (note: there is no training process for reasoning) ```bash bash run_reasoning.sh ``` ### Step3: Training the reranker ```bash bash train_reranker.sh ``` ## Generating training data of Planner ### We provide codes to generate your own training data to finetune the Planner by using different LLMs. #### If you are using Azure API ```bash python script.py --model "model_name" \ --dataset_name "dataset_name" \ --azure_api_key "your_azure_key" \ --azure_endpoint "your_azure_endpoint" \ --azure_api_version "your_azure_version" ``` #### If you are using OpenAI API ```bash python script.py --model "model_name" \ --dataset_name "dataset_name" \ --openai_api_key "your_openai_key" \ --openai_endpoint "your_openai_endpoint" ```