# MoR # Running the Evaluation and Reranking Script ## Installation To set up the environment, you can install dependencies using Conda or pip: ### Using Conda ```bash conda env create -f mor_env.yml conda activate your_env_name # Replace with actual environment name ``` ### Using pip ```bash pip install -r requirements.txt ``` ### Checkpoints and embeddings download Before running the inference, please go to https://drive.google.com/drive/folders/1ldOYiyrIaZ3AVAKAmNeP0ZWfD3DLZu9D?usp=drive_link (1) download the "checkpoints" and put it under the directory MoR/Planning/ (2) download the "data" and put it under the directory MoR/Reasoning/ (2) download the "model_checkpoint" and put it under the directory MoR/Reasoning/text_retrievers/ ## Inference To run the inference script, execute the following command in the terminal: ```bash bash eval_mor.sh ``` This script will automatically process three datasets using the pre-trained planning graph generator and the pre-trained reranker. ## Training (Train MoR from Scratch) ### Step1: Training the planning graph generator ```bash bash train_planner.sh ``` ### Step2: Train mixed traversal to collect candidates (note: there is no training process for reasoning) ```bash bash run_reasoning.sh ``` ### Step3: Training the reranker ```bash bash train_reranker.sh ``` ## Generating training data of Planner ### We provide codes to generate your own training data to finetune the Planner by using different LLMs. #### If you are using Azure API ```bash python script.py --model "model_name" \ --dataset_name "dataset_name" \ --azure_api_key "your_azure_key" \ --azure_endpoint "your_azure_endpoint" \ --azure_api_version "your_azure_version" ``` #### If you are using OpenAI API ```bash python script.py --model "model_name" \ --dataset_name "dataset_name" \ --openai_api_key "your_openai_key" \ --openai_endpoint "your_openai_endpoint" ```