MoR / stark_qa /tools /api_lib /voyage_emb.py
GagaLey's picture
framework
7bf4b88
import re
import torch
import voyageai
from functools import partial
import time
import multiprocessing
def get_voyage_embedding(text: str,
model: str = "voyage-large-2-instruct",
max_retry: int = 10,
sleep_time: int = 60) -> torch.FloatTensor:
"""
Get the voyage embedding for a given text.
Args:
text (str): The input text to be embedded.
model (str): The model to use for embedding. Default is "voyage-large-2-instruct".
max_retry (int): Maximum number of retries in case of an error. Default is 1.
sleep_time (int): Sleep time between retries in seconds. Default is 0.
Returns:
torch.FloatTensor: The embedding of the input text.
"""
assert isinstance(text, str), f'text must be str, but got {type(text)}'
assert len(text) > 0, 'text to be embedded should be non-empty'
client = voyageai.Client()
for _ in range(max_retry):
try:
emb = client.embed([text], model=model).embeddings
return torch.FloatTensor(emb).view(1, -1)
except voyageai.error.InvalidRequestError as e:
print(f'{e}')
e = str(e)
ori_length = len(text.split(' '))
match = re.search(r'The max allowed tokens per submitted batch is (\d+). Your batch has (\d+) tokens after truncation', e)
if match is not None:
max_length = int(match.group(1))
cur_length = int(match.group(2))
ratio = float(max_length) / cur_length
for reduce_rate in range(9, 0, -1):
shorten_text = text.split(' ')
length = int(ratio * ori_length * (reduce_rate * 0.1))
shorten_text = ' '.join(shorten_text[:length])
try:
emb = client.embed([shorten_text], model=model).embeddings
print(f'length={length} works! reduce_rate={0.1 * reduce_rate}.')
return torch.FloatTensor(emb).view(1, -1)
except:
continue
except Exception as e:
print(f'{e}, sleep for {sleep_time} seconds')
time.sleep(sleep_time)
raise RuntimeError("Failed to get embedding after maximum retries")
def get_voyage_embeddings(texts: list,
n_max_nodes: int = 128,
model: str = "voyage-large-2-instruct") -> torch.FloatTensor:
"""
Get embeddings for a list of texts using voyage's embedding model.
Args:
texts (list): List of input texts to be embedded.
n_max_nodes (int): Maximum number of parallel processes. Default is 5.
model (str): The model to use for embedding. Default is "voyage-large-2-instruct".
Returns:
torch.FloatTensor: A tensor containing embeddings for all input texts.
"""
assert isinstance(texts, list), f'texts must be list, but got {type(texts)}'
assert all([len(s) > 0 for s in texts]), 'every string in the `texts` list to be embedded should be non-empty'
processes = min(len(texts), n_max_nodes)
ada_encoder = partial(get_voyage_embedding, model=model)
with multiprocessing.Pool(processes=processes) as pool:
results = pool.map(ada_encoder, texts)
results = torch.cat(results, dim=0)
return results