File size: 11,823 Bytes
7bf4b88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(os.getcwd())))
from stark_qa import load_skb
from torch.utils.data import Dataset, DataLoader
import torch
from tqdm import tqdm
import numpy as np
import torch.nn as nn
from Reranking.utils import move_to_cuda, seed_everything
from Reranking.rerankers.path import PathReranker
import torch.nn.functional as F
import argparse
import pickle as pkl
class TestDataset(Dataset):
"""
data format: {
"query": query,
"pred_dict": {node_id: score},
'score_vector_dict': {node_id: [bm25, bm_25, bm25, ada]},
"text_emb_dict": {node_id: text_emb},
"ans_ids": [],
}
"""
def __init__(self, saved_data, args):
print(f"Start processing test dataset...")
self.text2emb_dict = saved_data['text2emb_dict']
self.data = saved_data['data']
self.text_emb_matrix = list(self.text2emb_dict.values())
self.text_emb_matrix = torch.concat(self.text_emb_matrix, dim=0)
# make the mapping between the key of text2emb_dict and the index of text_emb_matrix
self.text2idx_dict = {key: idx for idx, key in enumerate(self.text2emb_dict.keys())}
self.args = args
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if self.args.dataset_name == 'amazon':
# change from the str to index
self.data[idx]['text_emb_dict'] = {key: self.text2idx_dict[value] for key, value in self.data[idx]['text_emb_dict'].items()}
else:
# sort the pred_dict by the score
pred_dict = self.data[idx]['pred_dict']
sorted_ids = sorted(pred_dict.keys(), key=lambda x: pred_dict[x], reverse=True)
# get the top 50 candidates
sorted_ids = sorted_ids[:50]
# get the score vector
self.data[idx]['score_vector_dict'] = {key: self.data[idx]['score_vector_dict'][key] for key in sorted_ids}
# get the symb_enc_dict
self.data[idx]['symb_enc_dict'] = {key: self.data[idx]['symb_enc_dict'][key] for key in sorted_ids}
# change from the str to index
self.data[idx]['text_emb_dict'] = {key: self.text2idx_dict[value] for key, value in self.data[idx]['text_emb_dict'].items()}
self.data[idx]['text_emb_dict'] = {key: self.data[idx]['text_emb_dict'][key] for key in sorted_ids}
return self.data[idx]
def collate_batch(self, batch):
# q
batch_q = [batch[i]['query'] for i in range(len(batch))]
q_text = batch_q
# c
batch_c = [list(batch[i]['score_vector_dict'].keys()) for i in range(len(batch))] # [batch, 100]
batch_c = torch.tensor(batch_c)
c_score_vector = [list(batch[i]['score_vector_dict'].values()) for i in range(len(batch))] # [batch, 100, 4]
c_score_vector = torch.tensor(c_score_vector)
c_score_vector = c_score_vector[:, :, :self.args.vector_dim]
# c_symb_enc
c_symb_enc = [list(batch[i]['symb_enc_dict'].values()) for i in range(len(batch))]
c_symb_enc = torch.tensor(c_symb_enc) # [bs, 100, 3]
# c_text_emb
c_text_emb = [self.text_emb_matrix[list(batch[i]['text_emb_dict'].values())].unsqueeze(0) for i in range(len(batch))]
c_text_emb = torch.concat(c_text_emb, dim=0) # [bs, 100, 768]
# ans_ids
ans_ids = [batch[i]['ans_ids'] for i in range(len(batch))] # list of ans_ids
# pred_ids
pred_ids = batch_c.tolist()
# Create a dictionary for the batch
feed_dict = {
'query': q_text,
'c_score_vector': c_score_vector,
'c_text_emb': c_text_emb,
'c_symb_enc': c_symb_enc,
'ans_ids': ans_ids,
'pred_ids': pred_ids
}
return feed_dict
# ***** batch_evaluator *****
def batch_evaluator(skb, scores_cand, ans_ids, batch):
results = {}
# **** batch wise evaluation ****
# evaluate
candidates_ids = skb.candidate_ids
id_to_idx = {candidate_id: idx for idx, candidate_id in enumerate(candidates_ids)}
# initialize the pred_matrix
pred_matrix = torch.zeros((scores_cand.shape[0],len(candidates_ids)))
# get the index of each pred_ids
# flatten the pred_ids
flat_pred_ids = torch.tensor(batch['pred_ids']).flatten().tolist()
# get the index of each pred_ids
pred_idx = [id_to_idx[pred_id] for pred_id in flat_pred_ids]
# reshape the pred_idx
pred_idx = torch.tensor(pred_idx).reshape(scores_cand.shape[0], -1) # [bs, 100]
# move pred_matrix to the device
pred_matrix = pred_matrix.to(scores_cand.device)
# advanced indexing
pred_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), pred_idx] = scores_cand.squeeze(-1) # [bs, num_candidates]
# Create a mapping from candidate IDs to their indices for faster lookup
# Flatten ans_ids to a single list and map them to indices
flat_ans_idx = [id_to_idx[a_id] for sublist in ans_ids for a_id in sublist]
# Create the row indices for ans_matrix corresponding to the answers
row_indices = torch.repeat_interleave(torch.arange(len(ans_ids)), torch.tensor([len(sublist) for sublist in ans_ids]))
# Create the answer matrix
ans_matrix = torch.zeros((scores_cand.shape[0], len(candidates_ids)), device=scores_cand.device)
ans_matrix[row_indices, torch.tensor(flat_ans_idx, device=scores_cand.device)] = 1
# batch computing hit1
# find the index of the max score
max_score, max_idx = torch.max(pred_matrix, dim=1)
# check the label of the max idx
batch_hit1 = ans_matrix[torch.arange(scores_cand.shape[0]), max_idx]
hit1_list = batch_hit1.tolist()
# batch computing hit@5
_, top5_idx = torch.topk(pred_matrix, 5, dim=1)
batch_hit5 = ans_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), top5_idx]
# max with each row
batch_hit5 = torch.max(batch_hit5, dim=1)[0]
hit5_list = batch_hit5.tolist()
# batch computing recall@20
_, top20_idx = torch.topk(pred_matrix, 20, dim=1)
batch_recall20 = ans_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), top20_idx]
# sum with each row
batch_recall20 = torch.sum(batch_recall20, dim=1)
# divide by the sum of the ans_matrix along the row
batch_recall20 = batch_recall20 / torch.sum(ans_matrix, dim=1)
recall20_list = batch_recall20.tolist()
# batch computing mrr
# find the highest rank of the answer
_, rank_idx = torch.sort(pred_matrix, dim=1, descending=True)
# query the answer matrix with the rank_idx
batch_mrr = ans_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), rank_idx]
# find the first rank of the answer
batch_mrr = torch.argmax(batch_mrr, dim=1)
# add 1 to the rank
batch_mrr += 1
# divide by the rank
batch_mrr = 1 / batch_mrr.float()
mrr_list = batch_mrr.tolist()
results['hit@1'] = hit1_list
results['hit@5'] = hit5_list
results['recall@20'] = recall20_list
results['mrr'] = mrr_list
return results
# ***** evaluate *****
@torch.no_grad()
def evaluate(router, test_loader, skb):
router.eval()
all_results = {
"hit@1": [],
"hit@5": [],
"recall@20": [],
"mrr": []
}
avg_results = {
"hit@1": 0,
"hit@5": 0,
"recall@20": 0,
"mrr": 0
}
# save the scores and ans_ids, and pred_ids
pred_list = []
scores_cand_list = []
ans_ids_list = []
print(f"Start evaluating...")
# use tqdm to show the progress
for idx, batch in enumerate(tqdm(test_loader, desc='Evaluating', position=0)):
# print(f"idx: {idx}")
batch = move_to_cuda(batch)
# Check if the model is wrapped in DataParallel
if isinstance(router, nn.DataParallel):
scores_cand = router.module.eval_batch(batch) # q_emb: [bs, 100], c_emb: [bs*100, 100]
else:
scores_cand = router.eval_batch(batch)
# ans_ids
ans_ids = batch['ans_ids']
results = batch_evaluator(skb, scores_cand, ans_ids, batch)
for key in results.keys():
all_results[key].extend(results[key])
# save the scores and ans_ids, and pred_ids
pred_list.extend(batch['pred_ids'])
scores_cand_list.extend(scores_cand.cpu().tolist())
ans_ids_list.extend(ans_ids)
for key in avg_results.keys():
avg_results[key] = np.mean(all_results[key])
print(f"Results: {avg_results}")
return avg_results
def parse_args():
parser = argparse.ArgumentParser(description="Run PathRouter with dynamic combinations of embeddings.")
# dataset_name
parser.add_argument("--dataset_name", type=str, default="mag", help="Name of the dataset.")
# Add arguments for model configurations
parser.add_argument("--device", type=str, default="cuda", help="Device to run the model (e.g., 'cuda' or 'cpu').")
# add concat_num
parser.add_argument("--concat_num", type=int, default=0, help="Number of concatenation of embeddings.")
# checkpoint save path
parser.add_argument("--checkpoint_path", type=str, default="./data/checkpoints", help="Path saves the checkpoints.")
# similarity vector dim
parser.add_argument("--vector_dim", type=int, default=4, help="Dimension of the similarity vector.")
# Parse the base arguments
args = parser.parse_args()
return args
def get_concat_num(combo):
"""
Determine the value of concat_num based on the combination of embeddings.
- score_vec adds +1
- text_emb adds +1
- symb_enc adds +3
"""
concat_num = 0
if combo.get("score_vec", False): # If score_vec is True
concat_num += 1
if combo.get("text_emb", False): # If text_emb is True
concat_num += 1
if combo.get("symb_enc", False): # If symb_enc is True
concat_num += 3
return concat_num
def run(test_data, skb, dataset_name):
test_size = 64
test_dataset = TestDataset(test_data, args=args)
test_loader = DataLoader(test_dataset, batch_size=test_size, num_workers=32, collate_fn=test_dataset.collate_batch)
# load the model
print(f"Load the model...")
args.checkpoint_path = args.checkpoint_path + f"/{dataset_name}/best.pth"
router = PathReranker(socre_vector_input_dim=4, text_emb_input_dim=768, symb_enc_dim=3, args=args)
checkpoint = torch.load(args.checkpoint_path)
router.load_state_dict(checkpoint)
router = router.to(args.device)
# evalute
test_results = evaluate(router, test_loader, skb)
print(f"Test evaluation")
print(test_results)
return test_results
if __name__ == "__main__":
combo = {
"text_emb": True,
"score_vec": True,
"symb_enc": True
}
concat_num = get_concat_num(combo)
base_args = parse_args()
args = argparse.Namespace(**vars(base_args), **combo)
args.concat_num = concat_num
dataset_name = args.dataset_name
test_data_path = f"../{dataset_name}_test.pkl"
with open(test_data_path, 'rb') as f:
test_data = pkl.load(f)
skb = load_skb(dataset_name)
results = run(test_data, skb, dataset_name)
|