File size: 11,823 Bytes
7bf4b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(os.getcwd())))
from stark_qa import load_skb


from torch.utils.data import Dataset, DataLoader
import torch
from tqdm import tqdm
import numpy as np
import torch.nn as nn

from Reranking.utils import move_to_cuda, seed_everything
from Reranking.rerankers.path import PathReranker
import torch.nn.functional as F
import argparse
import pickle as pkl




class TestDataset(Dataset):
    """        
        data format: {
            "query": query,
            "pred_dict": {node_id: score},
            'score_vector_dict': {node_id: [bm25, bm_25, bm25, ada]},
            "text_emb_dict": {node_id: text_emb},
            "ans_ids": [],
        }

"""

    def __init__(self, saved_data, args):
        
        print(f"Start processing test dataset...")
        self.text2emb_dict = saved_data['text2emb_dict']
        self.data = saved_data['data']  
        
        self.text_emb_matrix = list(self.text2emb_dict.values())
        self.text_emb_matrix = torch.concat(self.text_emb_matrix, dim=0)
        
        # make the mapping between the key of text2emb_dict and the index of text_emb_matrix
        self.text2idx_dict = {key: idx for idx, key in enumerate(self.text2emb_dict.keys())}
        
        self.args = args
        
             
        
      
    def __len__(self):
        return len(self.data) 

    def __getitem__(self, idx):
        
        if self.args.dataset_name == 'amazon':
            # change from the str to index
            self.data[idx]['text_emb_dict'] = {key: self.text2idx_dict[value] for key, value in self.data[idx]['text_emb_dict'].items()}
        else:
            # sort the pred_dict by the score
            pred_dict = self.data[idx]['pred_dict']
            sorted_ids = sorted(pred_dict.keys(), key=lambda x: pred_dict[x], reverse=True)
            # get the top 50 candidates
            sorted_ids = sorted_ids[:50]
            # get the score vector
            self.data[idx]['score_vector_dict'] = {key: self.data[idx]['score_vector_dict'][key] for key in sorted_ids}
            # get the symb_enc_dict
            self.data[idx]['symb_enc_dict'] = {key: self.data[idx]['symb_enc_dict'][key] for key in sorted_ids}
            # change from the str to index
            self.data[idx]['text_emb_dict'] = {key: self.text2idx_dict[value] for key, value in self.data[idx]['text_emb_dict'].items()}
            self.data[idx]['text_emb_dict'] = {key: self.data[idx]['text_emb_dict'][key] for key in sorted_ids}
    
                

        return self.data[idx]
    
    
    def collate_batch(self, batch):
        
        # q
        batch_q = [batch[i]['query'] for i in range(len(batch))]
        q_text = batch_q
        
        # c
        batch_c = [list(batch[i]['score_vector_dict'].keys()) for i in range(len(batch))] # [batch, 100]
        batch_c = torch.tensor(batch_c)
        c_score_vector = [list(batch[i]['score_vector_dict'].values()) for i in range(len(batch))] # [batch, 100, 4]
        c_score_vector = torch.tensor(c_score_vector)
        c_score_vector = c_score_vector[:, :, :self.args.vector_dim]
        
        # c_symb_enc
        c_symb_enc = [list(batch[i]['symb_enc_dict'].values()) for i in range(len(batch))]
        c_symb_enc = torch.tensor(c_symb_enc) # [bs, 100, 3]
    
        # c_text_emb
        c_text_emb = [self.text_emb_matrix[list(batch[i]['text_emb_dict'].values())].unsqueeze(0) for i in range(len(batch))]
        c_text_emb = torch.concat(c_text_emb, dim=0) # [bs, 100, 768]
        
        
        # ans_ids
        ans_ids = [batch[i]['ans_ids'] for i in range(len(batch))] # list of ans_ids
        
        # pred_ids
        pred_ids = batch_c.tolist()
            
        
        # Create a dictionary for the batch
        feed_dict = {
            'query': q_text,
            'c_score_vector': c_score_vector,
            'c_text_emb': c_text_emb,
            'c_symb_enc': c_symb_enc,
            'ans_ids': ans_ids,
            'pred_ids': pred_ids

        }
        
        
        return feed_dict
    
    
#  ***** batch_evaluator *****
def batch_evaluator(skb, scores_cand, ans_ids, batch):

    results = {}
    
    # **** batch wise evaluation ****
    # evaluate
    candidates_ids = skb.candidate_ids
    id_to_idx = {candidate_id: idx for idx, candidate_id in enumerate(candidates_ids)}
    
    
    # initialize the pred_matrix
    pred_matrix = torch.zeros((scores_cand.shape[0],len(candidates_ids)))
    
    
    # get the index of each pred_ids
    # flatten the pred_ids
    flat_pred_ids = torch.tensor(batch['pred_ids']).flatten().tolist()
    
    
    # get the index of each pred_ids
    pred_idx = [id_to_idx[pred_id] for pred_id in flat_pred_ids]
    
    
    # reshape the pred_idx
    pred_idx = torch.tensor(pred_idx).reshape(scores_cand.shape[0], -1) # [bs, 100]
    
    # move pred_matrix to the device
    pred_matrix = pred_matrix.to(scores_cand.device)
    
    # advanced indexing
    pred_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), pred_idx] = scores_cand.squeeze(-1) # [bs, num_candidates]
    
    
    # Create a mapping from candidate IDs to their indices for faster lookup
    

    # Flatten ans_ids to a single list and map them to indices
    flat_ans_idx = [id_to_idx[a_id] for sublist in ans_ids for a_id in sublist]

    # Create the row indices for ans_matrix corresponding to the answers
    row_indices = torch.repeat_interleave(torch.arange(len(ans_ids)), torch.tensor([len(sublist) for sublist in ans_ids]))

    # Create the answer matrix
    ans_matrix = torch.zeros((scores_cand.shape[0], len(candidates_ids)), device=scores_cand.device)
    ans_matrix[row_indices, torch.tensor(flat_ans_idx, device=scores_cand.device)] = 1


    
    # batch computing hit1
    # find the index of the max score
    max_score, max_idx = torch.max(pred_matrix, dim=1)
    # check the label of the max idx
    batch_hit1 = ans_matrix[torch.arange(scores_cand.shape[0]), max_idx]
    hit1_list = batch_hit1.tolist()
    
    
    # batch computing hit@5
    _, top5_idx = torch.topk(pred_matrix, 5, dim=1)
    batch_hit5 = ans_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), top5_idx]
    
    # max with each row
    batch_hit5 = torch.max(batch_hit5, dim=1)[0]
    hit5_list = batch_hit5.tolist()
    
    
    
    # batch computing recall@20
    _, top20_idx = torch.topk(pred_matrix, 20, dim=1)
    batch_recall20 = ans_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), top20_idx]
    # sum with each row
    batch_recall20 = torch.sum(batch_recall20, dim=1)
    # divide by the sum of the ans_matrix along the row
    batch_recall20 = batch_recall20 / torch.sum(ans_matrix, dim=1)
    recall20_list = batch_recall20.tolist()
    
    
    
    # batch computing mrr
    # find the highest rank of the answer
    _, rank_idx = torch.sort(pred_matrix, dim=1, descending=True)
    # query the answer matrix with the rank_idx
    batch_mrr = ans_matrix[torch.arange(scores_cand.shape[0]).unsqueeze(1), rank_idx]
    # find the first rank of the answer
    batch_mrr = torch.argmax(batch_mrr, dim=1)
    # add 1 to the rank
    batch_mrr += 1
    # divide by the rank
    batch_mrr = 1 / batch_mrr.float()
    mrr_list = batch_mrr.tolist()
    

    results['hit@1'] = hit1_list
    results['hit@5'] = hit5_list
    results['recall@20'] = recall20_list
    results['mrr'] = mrr_list
    

    return results
    


# ***** evaluate *****
@torch.no_grad()
def evaluate(router, test_loader, skb):

    
    router.eval()

    all_results = {
        "hit@1": [],
        "hit@5": [],
        "recall@20": [],
        "mrr": []
    }
    avg_results = {
        "hit@1": 0,
        "hit@5": 0,
        "recall@20": 0,
        "mrr": 0
    }
    
    
    # save the scores and ans_ids, and pred_ids
    pred_list = []
    scores_cand_list = []
    ans_ids_list = []
    print(f"Start evaluating...")
    # use tqdm to show the progress
    for idx, batch in enumerate(tqdm(test_loader, desc='Evaluating', position=0)):
        # print(f"idx: {idx}")
        batch = move_to_cuda(batch)
        
        # Check if the model is wrapped in DataParallel
        if isinstance(router, nn.DataParallel):
            scores_cand = router.module.eval_batch(batch) # q_emb: [bs, 100], c_emb: [bs*100, 100]
        else:
            scores_cand = router.eval_batch(batch)


        # ans_ids
        ans_ids = batch['ans_ids']
           
        results = batch_evaluator(skb, scores_cand, ans_ids, batch)
                
        
        for key in results.keys():
            all_results[key].extend(results[key])
            
        # save the scores and ans_ids, and pred_ids
        pred_list.extend(batch['pred_ids'])
        scores_cand_list.extend(scores_cand.cpu().tolist())
        ans_ids_list.extend(ans_ids)
        
    
    
    for key in avg_results.keys():
        avg_results[key] = np.mean(all_results[key])
    
    print(f"Results: {avg_results}")
    

    
    return avg_results


def parse_args():
    
    parser = argparse.ArgumentParser(description="Run PathRouter with dynamic combinations of embeddings.")
    
    # dataset_name
    parser.add_argument("--dataset_name", type=str, default="mag", help="Name of the dataset.")
    
    # Add arguments for model configurations
    parser.add_argument("--device", type=str, default="cuda", help="Device to run the model (e.g., 'cuda' or 'cpu').")

    
    # add concat_num
    parser.add_argument("--concat_num", type=int, default=0, help="Number of concatenation of embeddings.")
    
    # checkpoint save path
    parser.add_argument("--checkpoint_path", type=str, default="./data/checkpoints", help="Path saves the checkpoints.")
    
    # similarity vector dim
    parser.add_argument("--vector_dim", type=int, default=4, help="Dimension of the similarity vector.")
    
    
    # Parse the base arguments
    args = parser.parse_args()
    return args


def get_concat_num(combo):
    """
    Determine the value of concat_num based on the combination of embeddings.
    - score_vec adds +1
    - text_emb adds +1
    - symb_enc adds +3
    """
    concat_num = 0
    if combo.get("score_vec", False):  # If score_vec is True
        concat_num += 1
    if combo.get("text_emb", False):  # If text_emb is True
        concat_num += 1
    if combo.get("symb_enc", False):  # If symb_enc is True
        concat_num += 3
        
        
    return concat_num


def run(test_data, skb, dataset_name):
    
    
    
    test_size = 64
    test_dataset = TestDataset(test_data, args=args)
    test_loader = DataLoader(test_dataset, batch_size=test_size, num_workers=32, collate_fn=test_dataset.collate_batch)
    
    # load the model
    print(f"Load the model...")
    args.checkpoint_path = args.checkpoint_path + f"/{dataset_name}/best.pth"
    router = PathReranker(socre_vector_input_dim=4, text_emb_input_dim=768, symb_enc_dim=3, args=args)
    checkpoint = torch.load(args.checkpoint_path)
    router.load_state_dict(checkpoint)
    router = router.to(args.device)
    
    # evalute
    test_results = evaluate(router, test_loader, skb)
    print(f"Test evaluation")
    print(test_results)
    
    return test_results

if __name__ == "__main__":
    
    combo = {
        "text_emb": True,
        "score_vec": True,
        "symb_enc": True
    }
    concat_num = get_concat_num(combo)
    
    base_args = parse_args()
    args = argparse.Namespace(**vars(base_args), **combo)
    args.concat_num = concat_num
    dataset_name = args.dataset_name
    
    test_data_path = f"../{dataset_name}_test.pkl"
    with open(test_data_path, 'rb') as f:
        test_data = pkl.load(f)
    skb = load_skb(dataset_name)
    results = run(test_data, skb, dataset_name)